机器人也会造假、有偏见?原因在这

前段时间,Facebook将人类编辑解雇,并让人工智能担任热门榜单的编辑。然而,在上任之后,该机器学习算法连续几天将几条不实新闻以及不雅视频推上热门榜单,其中包括宣称福克斯新闻炒掉了知名主持人Megyn Kelly并称其为“叛徒”,没过多久此则新闻就得到了当事人及相关人员辟谣。

此外,在今年3月23日,微软悄悄的推出了一款聊天机器人Tay。Tay最初是以一个清新可爱的少女形象出现,但是由于她的算法设定是通过学习网友的对话来丰富自己的语料库,很快她被网友充斥着激烈偏见的话语“带坏”,变成了一个彻底的仇视少数族裔、仇视女性、没有任何同情心的种族主义者。

种种现象看来,机器学习也不是那么的完美,这到底是如何造成的?而且,在智能汽车领域,研究人员意图将机器学习运用到人工智能车载系统上,并让其学会车主的驾驶习惯。但是,在看了上面的例子之后,为了打造更好的机器学习算法,我们应该做些什么?

为何机器学习总是出错?

简单来说,机器学习的原理就是用大量的数据对算法进行训练,从而达到理解人、学习人的目的。从中我们可以知道,这其中最重要的就属算法的“学习”过程。

以Tay的偏见为例,关于这个,在一个月前,谷歌的一个数据库貌似给出了答案。

两年前,谷歌的几个研究员启动了一个神经网络项目,目标是找出单词相邻组合的各种模式,而所要使用的语料库来自谷歌新闻文本中的300万个单词。虽然结果很复杂,但团队人员发现可以用向量空间图来展示这些模式,其中大约有300个维度。

在向量空间中,具有相似意义的单词会占据同一块位置,而单词间的关系,可以通过简单的向量代数来捕捉。例如,“男人与国王就相当于女人与王后”,可以使用符号表示为“男人:国王::女人:王后”。相似的例子有,“姐妹:女人::兄弟:男人”等等。这种单词之间的关系被称为“单词嵌入”。

最后,蕴含了诸多单词嵌入的数据库被称为Word2vec。之后的几年内,大量研究人员开始使用它帮助自己的工作,比如机器翻译和智能网页搜索。

但是有一天,波士顿大学的Tolga Bolukbasi的和几位来自微软研究院的人员发现,这个数据库存在一个很大的问题:性别歧视。

比如说,你在数据库里询问“巴黎:法国::东京:x”时,系统给你的答案是x=日本。但是,如果问题变为“父亲:医生::母亲:x”时,给出的答案是x=护士;再比如问题“男人:程序员::女人:x”,答案为 x=主妇。

这种答案在一定程度上已经算是一种性别歧视了。而据分析,个中原因是Word2vec语料库里的文本本身带有性别偏见,之后的向量空间图随之也受到影响。

由此我们可以看出,机器学习之所以会出错,某种程度上还是归于“学习资料”的“不太正经”,以及算法那种什么都学的性质。

这种错误是否可以避免?

讲真,以当前的技术来讲,这种现象是很难杜绝的。如果要杜绝这种情况的出现,那不仅涉及到技术层面,还有社会道德层面。

先看社会道德层面。机器学习算法的数据来源于人们的语言、行为习惯等,以软银计划打造的人工智能汽车为例。7月份,软银与本田达成合作,联手打造一辆能够阅读驾驶员情绪并与之交流的汽车,在行驶过程中,系统中的机器学习算法可以学习驾驶员的驾驶习惯,从而在无人驾驶模式开启时,能够给予驾驶者最舒服、毫无违和感的的驾驶体验。但是,如果该驾驶员有不良驾驶习惯,那将会对算法的学习提供错误的示范。

这仅仅是驾驶习惯,而在语言方面,其中可能包括暴力、侮辱等等字眼,相比于驾驶习惯,这些更难以约束。因而,在学习对象都不能“正经”的情况下,又怎么将机器学习算法调教完美?

再看技术层面,这也得从数据方面下手。如果想要好好的训练算法,研究人员就得剔除数据中的不良信息和隐藏的逻辑,再让算法分别识别。但从这里我们就可以了解到,这是对于研究人员而言,将是一项极其繁重、极具难度的工作。而且,抠字眼还是比较简单的了,最难搞的还是字里行间的逻辑关系,一不小心就是一个大坑。不管是人类,还是机器,对于这种识别都是一个难以跨越的坎儿。

以此种种来看,机器学习固有它的好处,但我们还是不能过于依赖,尤其是涉及到一些复杂的工作,比如开车、聊天等情形。不过,虽然当前这个问题很难解决,但随着人工智能技术的发展,说不定哪天研究人员就能想到一个法子,从而彻底解决这个问题。

原文发布于微信公众号 - 镁客网(im2maker)

原文发表时间:2016-09-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python数据科学

“半路出家”的Kaggle大师:如何正确打开数据科学竞赛?

凭借这一成绩,Vladimir也荣获了Kaggle的最高荣誉——竞赛超级大师(Competitions Grandmaster)。Kaggle至今已成立8年,注...

1021
来自专栏华章科技

如何用数学知识提升情商?数学学霸们的6大思维习惯

引言:成为一名“数学学霸”显然不是一件轻松的工作,不仅需要“高智商”的支持,还一不小心就被套上了“情商低”“Nerd”的“帽子”。

571
来自专栏镁客网

黑科技 | 拓扑学与物理学结合,量子计算机正在成为现实

1450
来自专栏AI科技大本营的专栏

美团大脑:知识图谱的建模方法及其应用 | 公开课笔记

作为人工智能时代最重要的知识表示方式之一,知识图谱能够打破不同场景下的数据隔离,为搜索、推荐、问答、解释与决策等应用提供基础支撑。

2152
来自专栏人工智能头条

MIT在读博士心得:做好AI科研,你需要注意什么?

1714
来自专栏媒矿工厂

利用人工智能提升足球直播效果

人工智能技术代表着未来无限的可能性,已经在很多领域带来巨大的冲击。在足球直播这一领域,版权方需要提供更多更优质的内容以应对日益增长的多元化需求,因此急需提高运营...

4112
来自专栏大数据挖掘DT机器学习

知乎观点收集:关于机器学习和数据挖掘找工作

甲:数据挖掘 很多地方招聘还是挺喜欢这样专业的,但是前提是你得过笔试关。 为了笔试,学习C和数据结构 数据挖掘的时候学习算法和推理机制等,看看数据分析,神经网络...

4127
来自专栏人工智能头条

人工智能的突破需要颠覆图灵机吗?

1712
来自专栏新智元

【给 iOS 开发者】人工智能在 iOS 开发上的应用和机会

【新智元导读】这篇文章是一名 iOS 开发者总结他在硅谷和西雅图的所见所闻,对人工智能和机器学习的思考,以及人工智能给 iOS 开发者带来的机会和挑战。 前言 ...

3905
来自专栏大数据文摘

“半路出家”的Kaggle Grandmaster:如何正确打开数据科学竞赛?

凭借这一成绩,Vladimir也荣获了Kaggle的最高荣誉——竞赛超级大师(Competitions Grandmaster)。Kaggle至今已成立8年,注...

1437

扫码关注云+社区

领取腾讯云代金券