硬纪元AI峰会前瞻:成像技术距离下一次颠覆还有多远?

在现实生活中,越来越多的行业用到了摄像头,像直播、监控等等,而在当下,因为某些物理原因,普通摄像头已经不能够满足行业发展的需求。

不论是成像技术,亦或是三维感知,其实都属于深度感知的范畴。虽然目前市场对于深度感知技术的需求呈井喷状态,但是能够提供成熟产品和方案的公司却屈指可数,造成这一现象的核心原因就是技术门槛过高。

从三维感知的角度来看,AI人工智能主要分为感知和认知两个层面。

针对感知层而言,有一个里程碑事件是深度传感器的普及。2009年,微软Kinect 诞生是当时的一个大事件,是人工智能感知传感器中的革命性的里程碑,从此以后大家终于可以很方便和低成本地获取3D信息了;另外,计算机视觉长期存在两大难题:图像理解和三维重建。

一直以来,求解3D都是人们的梦想,最初它需要拍两张或多张照片,费很大的劲儿来重建。但今天有了sensor,人们直接可以测量3D,它一下就开启了今天和未来的很多应用。

但是,Kinect V2是基于连续波间相法的ToF(Time-of-Flight)深度相机,它存在不能抗阳光,不能远距离工作的缺陷。而另一种获取三维数据的方式是通过机械扫描式激光雷达,但它同样存在无法解决的缺陷:产能受限成本高、数据稀疏空间分辨率低,限制了它们的应用范围。

深度感知现有的三种解决方案

现阶段常见的深度感知解决方案,主要依靠深度摄像头,在获取平面图像之外,还可以获取图像中的深度信息,比如说三维的位置以及尺寸等信息,这也就让计算机获得了环境和对象的三维立体数据。

从技术角度来细分的话,深度感知摄像头目前有如下三种解决方案:

结构光:目前应用最广泛的深度感知方案,基本原理是由结构光投射器向被测物体表面投射可控制的光点、光条或光面结构,并由图像传感器获得图像,通过系统几何关系,利用三角原理计算得到物体的三维坐标。上文中提到的Kinect 1代就是使用的这项技术。

双目视觉:只需安装两个摄像头,利用双目立体视觉成像原理,通过两个摄像机来提取包括三维位置在内的信息进行深度感知。因为没有涉及光学系统,所以双目视觉解决方案的成本较低,但是该项技术对于硬件设备的要求又相对较高。

ToF:飞行时间(Time of Flight)技术的缩写,基本原理是传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。ToF是受环境影响最小的技术,不过由于其分辨率不高,所以并不适用于高精度需求的应用场景。

三维感知技术对于AI的革命性推动及应用

目前全球范围内感知深度的ToF传感器有很多种,其中以光珀智能科技的ToF传感器最具代表性。

杭州光珀智能科技有限公司(以下简称“光珀”)主要专注于全球新一代ToF传感器技术的研发。光珀在基于PCT的专利保护下提出原理创新,使得他们的ToF传感器和传统的ToF深度相机(基于连续波间相法)相比,其远距离及抗阳光的特性更类似传统意义上的激光雷达。同时也解决了机械扫描式激光雷达产能受限成本高、数据稀疏空间分辨率低的两大缺陷。

光珀智能CEO白云峰介绍说:“目前,我们已经推出了‘光珀第一代ToF传感器芯片’,并由此构建了三个固态面阵激光雷达技术平台,分别满足不同距离下(近、中、远)、强阳光下(100Klux)、大场景(70⁰)、高精度(<1%)、高空间分辨率(0.06⁰H)等三维感知需求。这三个技术平台可以服务于智能安防、机器人的导航与避障、无人驾驶的环境感知。特别是在无人驾驶领域,光珀的传感器满足了量产无人车对激光雷达低成本、高空间分辨率的两大需要。

“光珀正和科研院校联手创建大场景下的稠密三维数据集。而我们相信,这样的数据集会对未来人工智能的发展有着革命性的推动作用。”

深度感知领域还能有哪些突破?

现阶段的深度感知技术还处于前期,虽然在硬件性能和算法程序上已经有所突破,但是依然面临诸多限制,这也导致了很多应用场景还处于商业化探索阶段。那么,对于深度感知领域,还能有哪些突破?

如果你想得到答案,就一定不要错过镁客网7月9日在北京国家会议中心举办的“3E“硬纪元”AI+产业应用创新峰会”,峰会期间将会有众多人工智能、深度感知领域的大咖,分享他们的最新见解与洞察。

所以,你还在犹豫什么,赶紧点击阅读原文报名参加吧!

原文发布于微信公众号 - 镁客网(im2maker)

原文发表时间:2017-07-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

业界 | DuerOS普罗米修斯计划:30页国际专家PPT全面剖析对话式AI数据集

机器之心发布 百度 DuerOS 美国西部时间 11 月 9 日,百度 DuerOS 普罗米修斯计划在美国硅谷召开启动发布会。一周后,2017 百度世界大会上,...

34410
来自专栏人工智能头条

杨光信解析京东应对双11背后的“京东大脑”

1746
来自专栏程序员的SOD蜜

DDD为何叫好不叫座?兼论DCI与业务分析的方法论

     今天,仔细阅读了园子里面的一个朋友写的《一缕阳光:DDD(领域驱动设计)应对具体业务场景,如何聚焦 Domain Model(领域模型)?》(http...

2427
来自专栏新智元

当无人机学会人工智能,它将是世界上最恐怖的武器

外媒称,五角大楼将提供资金,以研发一种小型芯片。这种芯片不仅有着类似人类大脑的人工智能,而且它很小,可以安装到大量移动设备上。 英国网站2月8日发表题为《会像...

2243
来自专栏理论坞

深度解析用户画像的标签体系

用户画像已经是作为一个数据从业者来说家常便饭的内容,围绕自然人的年龄、性别、职业、收入、风险、兴趣等各个维度去建立和完善相关的标签体系,重复重复再重复的优化。 ...

8123
来自专栏大数据文摘

机器学习行业盛会-旧金山机器学习研讨会上的10点思考

1455
来自专栏达观数据

技术分享 | 个性化推荐系统商业化的五大要素

在日前举行的2017 CSDI 中国软件研发管理行业峰会上,包括摩拜单车创始人及CTO夏一平、华为首席系统工程专家徐琦海、京东云、携程等一线互联网企业大数据平台...

43810
来自专栏灯塔大数据

一名数据科学家的新年计划

介绍 新的一年不仅仅意味着换一本新台历或者揉着眼睛在下一个清晨醒来。新的一年应该拥有一个新开端的喜悦,它赋予我们充分的理由去养成新习惯,也标志着新“希望”的到...

2575
来自专栏携程技术中心

搭建技术分享平台,携程技术中心深度学习Meetup回顾

今天由携程技术中心主办的深度学习Meetup在凌空SOHO举办。作为上海最顶级的深度学习大会,活动吸引了BI、机器学习、大数据等领域的工程师和高校教授们参与,会...

3506
来自专栏AI科技评论

你离能够拥有一个“强AI”女友还有多久?让专家告诉你

GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,谷歌,DeepMind,Uber,微软等巨头的人...

29311

扫码关注云+社区

领取腾讯云代金券