当产品经理遇见数据思维

本文作者 李鑫

于中国科学技术大学获计算机科学博士学位,悉尼科技大学访问学者,大数据分析与应用安徽省重点实验室研究员,中国互联网协会青年专家。现任科大讯飞研究院研究主管,先后负责大数据与人工智能技术在教育、脑科学等领域落地的业务,在国际知名学术会议与期刊发表论文近30篇。

无论是处变不惊的数据思维,还是波澜壮阔的数据应用,最终都得回到真实的都市丛林,变身为“数据科学家”。

  • 下一站:数据科学家

数据科学家是大数据时代最为热门的职业。对于从事数据科学的人来说,各个公司也给出了他们的要求。

IBM认为数据科学家是“一半分析师,一半艺术家”;埃森哲咨询公司认为“好奇心+分析能力+学习能力+业务+表现沟通+决策力”是从事数据科学这个行业的人员必备的素质;Facebook则定义数据科学家的工作内容为“IT+统计+可视化+跨界”。

上述三家公司都提到了除硬技能之外的软实力,可见我们再也没有理由去排斥软技能。数据科学家的彼岸,不再是CTO,而是CDO、CIO,甚至CEO。

  • 数据科学的历史由来

数据科学一词最早出现在1966年,由Peter Naur提出,这位老先生也是2005年图灵奖(计算机界的诺贝尔)的得主。当时Peter提出这个概念的时候,数据科学不叫Data Science,而是Datalogy,充其量只能翻译为数据学,而不能称为数据科学。

那么数据学与数据科学之间的区别究竟是怎么样的呢?从某种程度上来说,数据学是研究数据本身,然而数据科学除了这个内涵之外,还肩负了为自然科学与社会科学提供数据研究新方法的责任。这说明在人类演化的过程中,数据的思维早已固化在大脑中,并被当成习惯,所以我们为了了解数据科学,也应该去了解自然科学与社会科学的发源。

  • 数据科学与商业智能

2005年,美国国家科学委员会给数据科学下了一个定义,认为数据科学的作用就是“进行富有创造性的查询和分析”。其实,1966年至今,有很多人尝试给数据科学下定义,但是之所以选取这个定义,一方面是因为美国国家科学委员会的地位权威,另一方面是其定义中提到了“富有创造性”这个词。

数据科学不同于一般的IT工程,区别就在“创造性”这个点上。相较于其他项目中的问题已经被定义好,数据科学更需要自己找出问题。

在数据科学领域,被谈及较多的还有商业智能(Business Intelligence,BI)这个概念。大家可以通过以下表格,从数据、分析对象、平台以及工具四个角度对两者进行比较,并全面理解数据科学与商业智能的分别。

表:商业智能与数据科学特性对比

商业智能

数据科学

数据

结构化

非结构化、半结构化

对象

群体性

个性化

平台

数据仓库、OLAP

Hadoop

工具

SQL、ETL

用户画像、推荐系统、其他算法等

数据科学与商业智能没有谁将取代谁的趋势,更长远的时期内两者将并存,并更好地融合在一起。从现在来看,BI已经很好地吸收了数据科学的方法并为己所用。两者共生共存的一个主要原因就是,两者都是同一种数据思维,即使用数据驱动商业是一种闭环思维,本质上也属于数据控制论的范畴。一言以蔽之(可能不太严谨),BI用的是“套路”,数据科学需要的是创意。

  • 数据科学的职业分类与技能进阶

如果说数据科学是计算机科下面的一个属,那么隶属于这个属的种有哪些呢?大致可以分为两类,一类是分析,一类是实施。

在分析方面,有数据分析师、数据挖掘工程师、算法工程师这三个工种。从数据分析师到算法工程师,侧重点也从业务能力逐步过渡到了算法能力。

了解数据分析的工作内容,对于数据产品经理来说十分必要。从某种程度上说,这就应该是数据产品经理的职责内容之一。

对于数据分析师来说,我认为有三个要求需要做到。分别是言之有据、言之凿凿以及言之有物。言之有据是指使用量化数据替代平时的“拍脑袋”,这是数据思维进化的第一步。言之凿凿是指使用真实的数据说话,从用数据说话到用真实的数据说话,体现的是对数据的较真精神。不仅蕴含了严谨的态度,也使得业务的输出有保障。言之有物是更高层次的要求,不仅要在数据层面得出结果,还要能够根据表象给出一些意见和建议,可谓是使用真实的数据说有意义的事。

我们还可以从另一个角度来看数据分析师的技能,可以概括为“是什么”“为什么”“会怎样”与“怎么办”。对于“是什么”,涉及的技能有数据报表(Excel)、即席查询(SQL)、多维钻取(透视表和OLAP)、数据预警。当问题进入“为什么”的时候,就不是共性的工具可以解决的了,这个时候需要调用统计学知识进行数据分析。“会怎样”是基于历史数据进行预测的一个过程,统计学知识需要升级为数据挖掘的技巧,如回归模型。而最高级的形式就是“怎么办”,这有点类似于上述的软技能,也可以和言之有物相对应,需要的是逻辑思维能力。

  • 数据产品经理的职业新要求

当我们趟过人类社会与IT漫长的历史河流,职业规划就是崎岖不平的河床,在脑海中逐渐清晰。为了全面理清数据产品经理的职业新要求,我们细数了数据产品经理可能涉及的各个领域,以及在每个领域应该了解的深度。这样做的目的有两个,一个是促进工作更加高效地进行,另一个是给每个人更多的技能上升渠道。

在大众看来,数据产品经理就是产品经理与数据分析师的合体。其实,除了两者的拼接,可能还需要一些粘合剂才行。我在各个公司的主页以及各大招聘网站上查阅了与产品经理及数据分析师相关的工作岗位需求,调研的公司包含了当今主流的BAT(百度、阿里巴巴、腾讯)以及未来的潜力股TMD(今日头条、美团、滴滴)。通过对比各大公司的招聘要求,总结出了产品经理与数据分析师的关键技能图。

图:产品经理与数据分析师关键技能

数据产品经理的技能要求很清晰,大致可以分为三个部分,分别是产品经理硬技能,数据分析师硬技能,以及作为产品经理与数据分析师都要具备的软技能。

对于硬技能而言,我们看到了熟悉的产品设计、需求分析、原型设计、竞争分析等技能点,可以说这是产品经理的安身立命之本。对于数据分析师来说,除了需要了解一些程序语言,还需要了解诸如指标体系、可视化工具、分析工具等知识,可以说是半个IT人员。而中间的软技能包括市场、组织能力等。

很多时候,我会问自己一个问题,数据产品经理到底是具备数据分析能力的产品经理还是拥有产品思维的数据分析师?事实是,任何人都可以转变为数据产品经理,只要具备上述能力,而这些能力又因人而异,可以进行调整,很多非相关专业出身的人也可以胜任,毕竟产品经理是一个岗位,而并不是一个专业。

但有一点是可以确定的,数据产品经理一定是一个通才,而不是只会画原型图、写PPT的专才。这个社会已经是一个跨界的社会,很多财富藏在了金字塔的中间地带,如果不选择跨界,不选择用好奇心和求知欲去了解,那么就注定只能在金字塔上爬行,而无法前往金字塔中间地带。回到数据产品经理的主题上,难道你不觉得这个岗位提供了跨界的机会吗?

最后附上数据产品经理技能图谱。以产品基本技能为底,上面的支撑包含统计、数据挖掘、可视化、平台以及运营等其他技能,再辅以思维、文案和其他软实力做顶,便构成了完整的数据产品经理的必备技能图谱。

图:数据产品经理技能图谱

————

本文节选自新书《数据产品经理必修课:从零经验到令人惊艳》,从数据和产品经理的双重视角详细讲述了数据产品经理所需的各种能力,既有理论,也能落地。安徽省计算机学会理事长陈恩红、思科大中华区副总裁方剑斌、《人人都是产品经理》作者苏杰,联合力荐!本书正快马加鞭,向读者朋友飞速袭来。等待的片刻闲暇,不妨点击阅读原文补补数据产品的技术课!

  • 内容简介:当产品经理遇上大数据时代,数据产品经理应运而生。新时代的新岗位自然也有新要求。数据思维、数据预处理、数据统计、数据挖掘、数据可视化等是产品经理的必备技能。懂产品、懂运营、懂市场、懂表达、懂管理则是数据分析师的技能外延。本书正是为有志于从事数据产品岗位的人士提供掌握上述技能的必修课。让我们通过本书,在大数据的浪潮中乘科技与人文的扁舟,驶过数据产品经理的港湾,驶向数据科学家的彼岸。

原文发布于微信公众号 - 前沿技墅(Edge-Book)

原文发表时间:2018-03-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【清华AI公开课】景鲲:百度为什么重视语音?

2213
来自专栏落影的专栏

《学习的方法论》

前言 读书十数年,关于学习的思考、理解日益繁多,今天稍作整理。 新年伊始,以“学习”为主题,写一篇感想。 何为学习,为何学习? 摸索无序到有序的规律,是...

4265
来自专栏java一日一条

从学生到游戏开发者: 我学到的五件事

Gamelook报道过三年前,我参加了一个游戏研发课程,在此之前我从来没有学过编程。现在,我非常自豪地成为了Failbetter Games工作室的一名开发者。...

581
来自专栏企鹅号快讯

不止抢工作 人工智能还有了“小情绪”

新的一年即将到来,人们也充满希望,不过,如今要预测未来几个月将会出现什么新技术,还为时过早。在这个飞速发展的时代,我们要学会如何忽略关于专家所认为的或将成为来年...

1909
来自专栏PPV课数据科学社区

推荐 :如何才能获得一份数据科学家的职位

作者Alec Smith是数据科学领域中资深HR,之所以写这篇文章是因为经常被问到一个问题:“如何才能获得一份数据科学家的职位?” 不仅这个问题经常被问引起了注...

3445
来自专栏新智元

【把机器人当人看】图灵发布具备情感和思维强化的机器人操作系统

今天北京初雪,但没有挡住众多机器人产业界精英对图灵机器人新品发布会的强烈好奇与热情。俞志晨是国内人工智能创业团队里最受关注的新星之一,他对机器人事业的虔诚...

35910
来自专栏大数据文摘

业界 | 会员同比涨七成,爱奇艺是如何用大数据助力娱乐工业革命的?

本文为清华数据科学研究院联合大数据文摘发起的年度白皮书《顶级数据团队建设全景报告》系列专访的第四篇内容。《报告》囊括专家访谈、问卷、网络数据分析,力求为行业内数...

1260
来自专栏BestSDK

视觉设计不只是华丽,更多在于细节处理

视觉在整个设计流程中是一个两极分化的一环,它常被认为是对设计进行多余的雕琢,只不过是为了取悦老板们的糖衣炮弹。又或者,通常对于初级设计师,他们甚至认为视觉设计是...

2975
来自专栏CDA数据分析师

为什么你学完了68个Python函数,却依旧做不好数据分析?

? 作者 Gam 本文为CDA数据分析师原创作品,转载需授权 数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了...

3747
来自专栏Java架构

淘汰?不存在的!Java程序员如何避免职业危机

Java行业在当下人才是供不应求,但是作为Java程序员的你也得居安思危,你要知道你身处的是一个高速变化的行业,稍不留意你的位置还是存在被取代的风险,那么对于一...

2523

扫码关注云+社区

领取腾讯云代金券