从零开始用Python实现k近邻算法(附代码、数据集)

本文将带领读者理解KNN算法在分类问题中的使用,并结合案例运用Python进行实战操作。

注意:本文于2014年10月10日首发,并于2018年3月27日更新

引言

进入数据分析领域的四年来,我构建的模型的80%多都是分类模型,而回归模型仅占15-20%。这个数字会有浮动,但是整个行业的普遍经验值。分类模型占主流的原因是大多数分析问题都涉及到做出决定。例如一个客户是否会流失,我们是否应该针对一个客户进行数字营销,以及客户是否有很大的潜力等等。这些分析有很强的洞察力,并且直接关系到实现路径。在本文中,我们将讨论另一种被广泛使用的分类技术,称为k近邻(KNN)。本文的重点主要集中在算法的工作原理以及输入参数如何影响输出/预测。

目录

  • 什么情况下使用KNN算法?
  • KNN算法如何工作?
  • 如何选择因子K?
  • 分解--KNN的伪代码
  • 从零开始的Python实现
  • 和Scikit-learn比较

什么情况使用KNN算法?

KNN算法既可以用于分类也可以用于回归预测。然而,业内主要用于分类问题。在评估一个算法时,我们通常从以下三个角度出发:

  • 模型解释性
  • 运算时间
  • 预测能力

让我们通过几个例子来评估KNN:

KNN算法在这几项上的表现都比较均衡。由于便于解释和计算时间较短,这种算法使用很普遍。

KNN算法的原理是什么?

让我们通过一个简单的案例来理解这个算法。下图是红圆圈和绿方块的分布图:

现在我们要预测蓝星星属于哪个类别。蓝星星可能属于红圆圈,或属于绿方块,也可能不属于任何类别。KNN中的“K”是我们要找到的最近邻的数量。假设K = 3。因此,我们现在以蓝星星为圆心来作一个圆,使其恰巧只能包含平面内的3个数据点。参阅下图:

离蓝星星最近的三个点都是红圆圈。因此,我们可以以较高的置信水平判定蓝星星应属于红圆圈这个类别。在KNN算法中,参数K的选择是非常关键的。接下来,我们将探索哪些因素可以得到K的最佳值。

如何选择因子K?

首先要了解K在算法中到底有什么影响。在前文的案例中,假定总共只有6个训练数据,给定K值,我们可以划分两个类的边界。现在让我们看看不同K值下两个类别的边界的差异。

仔细观察,我们会发现随着K值的增加,边界变得更平滑。当K值趋于无穷大时,分类区域最终会全部变成蓝色或红色,这取决于占主导地位的是蓝点还是红点。我们需要基于不同K值获取训练错误率和验证错误率这两个参数。以下为训练错误率随K值变化的曲线:

如图所示,对于训练样本而言,K=1时的错误率总是为零。这是因为对任何训练数据点来说,最接近它的点就是其本身。因此,K=1时的预测总是准确的。如果验证错误曲线也是这样的形状,我们只要设定K为1就可以了。以下是随K值变化的验证错误曲线:

显然,在K=1的时候,我们过度拟合了边界。因此,错误率最初是下降的,达到最小值后又随着K的增加而增加。为了得到K的最优值,我们将初始数据集分割为训练集和验证集,然后通过绘制验证错误曲线得到K的最优值,应用于所有预测。

分解--KNN的伪代码

我们可以通过以下步骤实现KNN模型:

  • 加载数据。
  • 预设K值。
  • 对训练集中数据点进行迭代,进行预测。

STEPS:

  • 计算测试数据与每一个训练数据的距离。我们选用最常用的欧式距离作为度量。其他度量标准还有切比雪夫距离、余弦相似度等
  • 根据计算得到的距离值,按升序排序
  • 从已排序的数组中获取靠前的k个点
  • 获取这些点中的出现最频繁的类别
  • 得到预测类别

从零开始的Python实现

我们将使用流行的Iris数据集来构建KNN模型。你可以从这里下载(数据集链接:https://gist.githubusercontent.com/gurchetan1000/ec90a0a8004927e57c24b20a6f8c8d35/raw/fcd83b35021a4c1d7f1f1d5dc83c07c8ffc0d3e2/iris.csv)

# Importing libraries import pandas as pd import numpy as np import math import operator #### Start of STEP 1 # Importing data data = pd.read_csv("iris.csv") #### End of STEP 1 data.head()

# Defining a function which calculates euclidean distance between two data points def euclideanDistance(data1, data2, length): distance = 0 for x in range(length): distance += np.square(data1[x] - data2[x]) return np.sqrt(distance) # Defining our KNN model def knn(trainingSet, testInstance, k): distances = {} sort = {} length = testInstance.shape[1] #### Start of STEP 3 # Calculating euclidean distance between each row of training data and test data for x in range(len(trainingSet)): #### Start of STEP 3.1 dist = euclideanDistance(testInstance, trainingSet.iloc[x], length) distances[x] = dist[0] #### End of STEP 3.1 #### Start of STEP 3.2 # Sorting them on the basis of distance sorted_d = sorted(distances.items(), key=operator.itemgetter(1)) #### End of STEP 3.2 neighbors = [] #### Start of STEP 3.3 # Extracting top k neighbors for x in range(k): neighbors.append(sorted_d[x][0]) #### End of STEP 3.3 classVotes = {} #### Start of STEP 3.4 # Calculating the most freq class in the neighbors for x in range(len(neighbors)): response = trainingSet.iloc[neighbors[x]][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 #### End of STEP 3.4 #### Start of STEP 3.5 sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) return(sortedVotes[0][0], neighbors) #### End of STEP 3.5 # Creating a dummy testset testSet = [[7.2, 3.6, 5.1, 2.5]] test = pd.DataFrame(testSet) #### Start of STEP 2 # Setting number of neighbors = 1 k = 1 #### End of STEP 2 # Running KNN model result,neigh = knn(data, test, k) # Predicted class print(result) -> Iris-virginica # Nearest neighbor print(neigh) -> [141]

现在我们改变k的值并观察预测结果的变化:

# Setting number of neighbors = 3 k = 3 # Running KNN model result,neigh = knn(data, test, k) # Predicted class print(result) -> Iris-virginica # 3 nearest neighbors print(neigh) -> [141, 139, 120] # Setting number of neighbors = 5 k = 5 # Running KNN model result,neigh = knn(data, test, k) # Predicted class print(result) -> Iris-virginica # 5 nearest neighbors print(neigh) -> [141, 139, 120, 145, 144]

和scikit-learn比较

from sklearn.neighbors import KNeighborsClassifier neigh = KNeighborsClassifier(n_neighbors=3) neigh.fit(data.iloc[:,0:4], data['Name']) # Predicted class print(neigh.predict(test)) -> ['Iris-virginica'] # 3 nearest neighbors print(neigh.kneighbors(test)[1]) -> [[141 139 120]]

可以看到,两个模型都预测了同样的类别(“irisi –virginica”)和同样的最近邻([141 139 120])。因此我们可以得出结论:模型是按照预期运行的。

尾注

KNN算法是最简单的分类算法之一。即使如此简单,它也能得到很理想的结果。KNN算法也可用于回归问题,这时它使用最近点的均值而不是最近邻的类别。R中KNN可以通过单行代码实现,但我还没有探索如何在SAS中使用KNN算法。

您觉得这篇文章有用吗?您最近使用过其他机器学习工具吗?您是否打算在一些业务问题中使用KNN?如果是的话,请与我们分享你打算如何去做。

原文标题:Introduction to k-Nearest Neighbors: Simplified (with implementation in Python)

原文链接:https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

译者简介

王雨桐,统计学在读,数据科学硕士预备,跑步不停,弹琴不止。梦想把数据可视化当作艺术,目前日常是摸着下巴看机器学习。

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。

原文发布于微信公众号 - 数据派THU(DatapiTHU)

原文发表时间:2018-04-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏聊聊技术

原 数据结构-二叉搜索树(Binary S

2887
来自专栏xingoo, 一个梦想做发明家的程序员

AOE关键路径

这个算法来求关键路径,其实就是利用拓扑排序,首先求出,每个节点最晚开始时间,再倒退求每个最早开始的时间。 从而算出活动最早开始的时间和最晚开始的时间,如果这两个...

2527
来自专栏开发与安全

算法:最短路径之弗洛伊德(Floyd)算法

为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。 ? 我们先定义两个二维数组D[3...

3486
来自专栏desperate633

LeetCode Invert Binary Tree题目分析

Invert a binary tree. 4 / \ 2 7 / \ / \1 3 6 9 to4 / \ 7 2 / \ / \9 6 3 1 Tri...

871
来自专栏聊聊技术

原 初学图论-Kahn拓扑排序算法(Kah

2888
来自专栏拭心的安卓进阶之路

Java 集合深入理解(12):古老的 Vector

今天刮台风,躲屋里看看 Vector ! 都说 Vector 是线程安全的 ArrayList,今天来根据源码看看是不是这么相...

2447
来自专栏Hongten

ArrayList VS Vector(ArrayList和Vector的区别)_面试的时候经常出现

1762
来自专栏聊聊技术

原 数据结构-红黑树(Red-Black

3489
来自专栏计算机视觉与深度学习基础

Leetcode 114 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given...

1958
来自专栏后端之路

LinkedList源码解读

List中除了ArrayList我们最常用的就是LinkedList了。 LInkedList与ArrayList的最大区别在于元素的插入效率和随机访问效率 ...

19710

扫码关注云+社区