《算法图解》第七章笔记_迪杰斯特拉算法

软件环境:Python 3.7.0b4

一、迪杰斯特拉(dijkstras)算法介绍

算法目标:找出一个图中最快(耗时最短)的路径。

实现步骤:

  1. 找出最短时间内前往的节点;
  2. 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销;
  3. 重复这个过程,直到对图中的每个节点都重复了以上两个步骤;
  4. 计算最终路径。

二、迪杰斯特拉算法术语介绍

迪杰斯特拉算法用于每条边都有关联数字的图,这些数字称为权重(weight)。

带权重的图称为加权图(weighted graph),不带权重的图称为非加权图(unweighted graph)

要计算非加权图中的最短路径,可使用广度优先搜索。要计算加权图中的最短路径,可使用狄克斯特拉算法。

三、算法实现

以下图为例

要解决这个问题,需要先画出三个散列表:

随着算法的进行,我们将不断更新散列表costs和parents。

graph = {}  #首先需要实现这个图

需要同时存储邻居和前往邻居的开销

graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

同时还需要用一个散列表来存储每个节点的开销,一个存储父节点的散列表,一个数组。

下面来看看算法的执行过程:

完整代码如下(Python)

# 添加节点和邻居
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

graph["a"] = {}
graph["a"]["fin"] = 1

graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5

graph["fin"] = {}  # 终点没有邻居

# 存储每个节点开销的散列表
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity

# 存储父节点的散列表
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None

processed = []  # 一个数组,用于记录处理过的节点。因为对于同一个节点,不用处理多次。

def find_lowest_cost_node(costs):
    lowest_cost = float("inf")
    lowest_cost_node = None
    # 遍历所有的节点
    for node in costs:
        cost = costs[node]
        # 如果当前节点的开销更低且未处理过
        if cost < lowest_cost and node not in processed:
            # 就将其视为开销最低的节点
            lowest_cost = cost
            lowest_cost_node = node
    return lowest_cost_node

# 在未处理的节点中找出开销最小的节点
node = find_lowest_cost_node(costs)
# 这个while循环在所有节点都被处理过后结束
while node is not None:
    cost = costs[node]
    # 遍历当前节点的所有邻居
    neighbors = graph[node]
    for n in neighbors.keys():
        new_cost = cost + neighbors[n]
        # 如果经当前节点前往该邻居更近
        if costs[n] > new_cost:
            # 就更新该邻居的开销
            costs[n] = new_cost
            # 同时将该邻居的父节点设置为当前节点
            parents[n] = node
    # 将当前节点标记为处理过
    processed.append(node)
    # 找出接下来要处理的节点,并做循环
    node = find_lowest_cost_node(costs)

print ("Cost from the start to each node:")
print (costs)

四、小结

  • 广度有限搜索用于在非加权图中查找最短路径。
  • 迪杰斯特拉算法用于在加权图中查找最短路径。
  • 仅当权重为正时迪杰斯特拉算法才管用。
  • 如果图中包含负权边,考虑使用贝尔曼-福德(Bellman-Ford)算法。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏进击的程序猿

进击算法:字符串匹配的 BM 算法

各种文本编辑器的 "查找" 功能(Ctrl+F),大多采用 Boyer-Moore 算法。

762
来自专栏数据小魔方

左手用R右手Python系列10——统计描述与列联分析

数据统计描述与列联表分析是数据分析人员需要掌握的基础核心技能,R语言与Python作为优秀的数据分析工具,在数值型数据的描述,类别型变量的交叉分析方面,提供了诸...

48212
来自专栏懒人开发

(1)James Stewart Calculus 5th Edition:Functions and Models

1003
来自专栏灯塔大数据

每周学点大数据 | No.45 基于路径的图算法

No.45期 基于路径的图算法 Mr. 王:接下来我们看一类具体的问题,这类问题叫作基于路径的图算法。这类算法的目标是计算节点间关于路径的信息。在这类问题中,图...

3155
来自专栏freesan44

python 算法开发笔记

992
来自专栏机器之心

业界 | 探索Siri背后的技术:将逆文本标准化(ITN)转化为标签问题

2744
来自专栏PPV课数据科学社区

数据咖小课堂:R语言十八讲--(补充)处理缺失值

? 缺失值处理在数据分析中是关键的一步,而且是开始的关键一步,我们对于数据的缺失处理直接影响模型的准确性. 1.产生的原因: 调查者忘记回答了,拒绝回答,不完...

2778
来自专栏Spark学习技巧

最大子序列和问题之算法优化

853
来自专栏mathor

LeetCode200.岛屿的个数

 dfs做法,遇到1,就进入infect函数,将1及其周围是1的全部”感染“成2

663
来自专栏算法修养

POJ 1964&HDU 1505&HOJ 1644 City Game(最大0,1子矩阵和总结)

最大01子矩阵和,就是一个矩阵的元素不是0就是1,然后求最大的子矩阵,子矩阵里的元素都是相同的。 这个题目,三个oj有不同的要求,hoj的要求是5s,...

2874

扫码关注云+社区