前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >《算法图解》第七章笔记_迪杰斯特拉算法

《算法图解》第七章笔记_迪杰斯特拉算法

作者头像
Zoctopus
发布2018-06-20 15:18:24
7310
发布2018-06-20 15:18:24
举报

软件环境:Python 3.7.0b4

一、迪杰斯特拉(dijkstras)算法介绍

算法目标:找出一个图中最快(耗时最短)的路径。

实现步骤:

  1. 找出最短时间内前往的节点;
  2. 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销;
  3. 重复这个过程,直到对图中的每个节点都重复了以上两个步骤;
  4. 计算最终路径。

二、迪杰斯特拉算法术语介绍

迪杰斯特拉算法用于每条边都有关联数字的图,这些数字称为权重(weight)。

带权重的图称为加权图(weighted graph),不带权重的图称为非加权图(unweighted graph)

要计算非加权图中的最短路径,可使用广度优先搜索。要计算加权图中的最短路径,可使用狄克斯特拉算法。

三、算法实现

以下图为例

要解决这个问题,需要先画出三个散列表:

随着算法的进行,我们将不断更新散列表costs和parents。

graph = {}  #首先需要实现这个图

需要同时存储邻居和前往邻居的开销

graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

同时还需要用一个散列表来存储每个节点的开销,一个存储父节点的散列表,一个数组。

下面来看看算法的执行过程:

完整代码如下(Python)

# 添加节点和邻居
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

graph["a"] = {}
graph["a"]["fin"] = 1

graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5

graph["fin"] = {}  # 终点没有邻居

# 存储每个节点开销的散列表
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity

# 存储父节点的散列表
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None

processed = []  # 一个数组,用于记录处理过的节点。因为对于同一个节点,不用处理多次。

def find_lowest_cost_node(costs):
    lowest_cost = float("inf")
    lowest_cost_node = None
    # 遍历所有的节点
    for node in costs:
        cost = costs[node]
        # 如果当前节点的开销更低且未处理过
        if cost < lowest_cost and node not in processed:
            # 就将其视为开销最低的节点
            lowest_cost = cost
            lowest_cost_node = node
    return lowest_cost_node

# 在未处理的节点中找出开销最小的节点
node = find_lowest_cost_node(costs)
# 这个while循环在所有节点都被处理过后结束
while node is not None:
    cost = costs[node]
    # 遍历当前节点的所有邻居
    neighbors = graph[node]
    for n in neighbors.keys():
        new_cost = cost + neighbors[n]
        # 如果经当前节点前往该邻居更近
        if costs[n] > new_cost:
            # 就更新该邻居的开销
            costs[n] = new_cost
            # 同时将该邻居的父节点设置为当前节点
            parents[n] = node
    # 将当前节点标记为处理过
    processed.append(node)
    # 找出接下来要处理的节点,并做循环
    node = find_lowest_cost_node(costs)

print ("Cost from the start to each node:")
print (costs)

四、小结

  • 广度有限搜索用于在非加权图中查找最短路径。
  • 迪杰斯特拉算法用于在加权图中查找最短路径。
  • 仅当权重为正时迪杰斯特拉算法才管用。
  • 如果图中包含负权边,考虑使用贝尔曼-福德(Bellman-Ford)算法。
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-06-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、迪杰斯特拉(dijkstras)算法介绍
  • 二、迪杰斯特拉算法术语介绍
  • 三、算法实现
  • 四、小结
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档