pytorch新手需要注意的隐晦操作Tensor,max,gather

pytorch中有很多操作比较隐晦,需要仔细研究结合一些例子才能知道如何操作,在此对这些进行总结!

torch.gather(input, dim, index, out=None) → Tensor

先看官方的介绍: 如果input是一个n维的tensor,size为 (x0,x1…,xi−1,xi,xi+1,…,xn−1),dim为i,然后index必须也为n维tensor,size为 (x0,x1,…,xi−1,y,xi+1,…,xn−1),其中y >= 1,最后输出的out与index的size是一样的。 意思就是按照一个指定的轴(维数)收集值 对于一个三维向量来说:

out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

参数: input (Tensor) – 源tensor dim (int) – 指定的轴数(维数) index (LongTensor) – 需要聚集起来的数据的索引 out (Tensor, optional) – 目标tensor

看完介绍后,稍微思考一下,然后再看一个例子:

scores是一个计算出来的分数,类型为[torch.FloatTensor of size 5×1000] 而y_var是正确分数的索引,类型为[torch.LongTensor of size 5] 容易知道,这里有1000个类别,有5个输入图像,每个图像得出的分数中只有一个是正确的,正确的索引就在y_var中,这里要做的是将正确分数根据索引标号提取出来。

	scores = model(X_var)  # 分数
    scores = scores.gather(1, y_var.view(-1, 1)).squeeze()  #进行提取

提取后的scores格式也为[torch.FloatTensor of size 5] 这里讲一下变化过程: 1、首先要知道之前的scores的size为[5,1000],而y_var的size为[5],scores为2维,y_var为1维不匹配,所以先用view将其展开为[5,1]的size,这样维数n就与scroes匹配了。 2、接下来进行gather,gather函数中第一个参数为1,意思是在第二维进行汇聚,也就是说通过y_var中的五个值来在scroes中第二维的5个1000中进行一一挑选,挑选出来后的size也为[5,1],然后再通过squeeze将那个一维去掉,最后结果为[5]

再看一个使用相同思想的例子

def gather_example():
    N, C = 4, 5
    s = torch.randn(N, C)
    y = torch.LongTensor([1, 2, 1, 3])
    print(s)
    print(y)
    print(s.gather(1, y.view(-1, 1)).squeeze())
gather_example()

结果为:

-0.9526  1.7607 -1.0142 -0.6761  0.3022
-0.8421  0.5325  0.4834  0.8441 -0.1592
 0.8786  2.6909  1.3635  0.1197  0.4031
-0.8397  1.4782  0.4514 -0.8381 -2.0638
[torch.FloatTensor of size 4x5]


 1
 2
 1
 3
[torch.LongTensor of size 4]


 1.7607
 0.4834
 2.6909
-0.8381
[torch.FloatTensor of size 4]

使用普通python函数实现的例子

假设一个numpy数组s的shape为 (N, C),y是一个shape为(N,)的numpy数组,内容为 0 <= y[i] < C 整数,然后我们使用s[np.arange(N), y] 来进行在s中挑选每一个和y索引对应的数字,其shape同样为(N,)

torch.max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)

max函数需要注意的是,它是一个过载函数,函数参数不同函数的功能和返回值也不同。 当max函数中有维数参数的时候,它的返回值为两个,一个为最大值,另一个为最大值的索引

>> a = torch.randn(4, 4)
>> a

0.0692  0.3142  1.2513 -0.5428
0.9288  0.8552 -0.2073  0.6409
1.0695 -0.0101 -2.4507 -1.2230
0.7426 -0.7666  0.4862 -0.6628
torch.FloatTensor of size 4x4]

>>> torch.max(a, 1)
(
 1.2513
 0.9288
 1.0695
 0.7426
[torch.FloatTensor of size 4]
,
 2
 0
 0
 0
[torch.LongTensor of size 4]
)

Tensor隐晦操作

使用Tensor型数据进行比较的时候需要注意,如果比较的是其中的值,那么必须将其化为普通值再进行比较,即使是一维的单个数据,也要用[0]操作符来进行读取。 如果想要整个进行比较,建议使用torch.equal来进行比较

>>> apple = torch.Tensor([1,2,3])
>>> apple
Out[20]: 
 1
 2
 3
[torch.FloatTensor of size 3]
>>> apple[0]
Out[21]: 1.0
>>> banana = torch.Tensor([1])
>>> banana
Out[23]: 
 1
[torch.FloatTensor of size 1]
>>> banana[0]
Out[24]: 1.0

参考资料: http://pytorch.org/docs/master/ http://cs231n.stanford.edu/syllabus.html

此文由腾讯云爬虫爬取,文章来源于Oldpan博客

欢迎关注Oldpan博客公众号,持续酝酿深度学习质量文:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏我和未来有约会

简练的视图模型 ViewModel

patterns & practices Developer Center 发布了 Unity Application Block 1.2 for Silver...

2169
来自专栏ml

md5算法原理一窥(其一)

    首先,需要了解的事,md5并不是传说中的加密算法,只是一种散列算法。其加密的算法并不是我们说所的那样固定不变,只是一种映射的关系。 所以解密MD5没有现...

3887
来自专栏MelonTeam专栏

Bitmap 源码阅读笔记

导语: Android 系统上的图片的处理,跟Bitmap 这个类脱不了关系,我们有必要去深入阅读里面的源码,以便在工作中能更好的处理Bitmap相关的问题...

2488
来自专栏c#开发者

XML Encryption in .Net

XML Encryption in .Net One of the new features being introduced with the Whidbey...

4367
来自专栏Pulsar-V

Save Camera Document

#pragma once #include "HCCamera.h" #include <time.h> #include <cstdio> #incl...

2828
来自专栏Hadoop数据仓库

Oracle sqlldr 如何导入一个日期列

1. LOAD DATA INFILE * INTO TABLE test FIELDS TERMINATED BY X'9' TRAILING NULLCO...

1786
来自专栏余生开发

echarts太阳分布图-饼图来回穿梭

var dom = document.getElementById("container");

1172
来自专栏一个会写诗的程序员的博客

java.sql.SQLException: connection holder is null

java.sql.SQLException: connection holder is null

1341
来自专栏菩提树下的杨过

linq to sql取出随机记录/多表查询/将查询出的结果生成xml

在手写sql的年代,如果想从sqlserver数据库随机取几条数据,可以利用order by NewId()轻松实现,要实现多表查询也可以用select * f...

2196
来自专栏封碎

Android中Broadcast的Intent大全 博客分类: Android小技巧 Android.netWAPGoogle

962

扫码关注云+社区