用 TensorFlow.js 在浏览器中训练神经网络

本文结构:

  1. 什么是 TensorFlow.js
  2. 为什么要在浏览器中运行机器学习算法
  3. 应用举例:regression
  4. 和 tflearn 的代码比较

1. 什么是 TensorFlow.js

TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模型。 具有 GPU 加速功能,并自动支持 WebGL 可以导入已经训练好的模型,也可以在浏览器中重新训练现有的所有机器学习模型 运行 Tensorflow.js 只需要你的浏览器,而且在本地开发的代码与发送给用户的代码是相同的。

TensorFlow.js 对未来 web 开发有着重要的影响,JS 开发者可以更容易地实现机器学习,工程师和数据科学家们可以有一种新的方法来训练算法,例如官网上 Emoji Scavenger Hunt 这样的游戏界面,让用户一边玩游戏一边将模型训练地更好。

用 Tensorflow.js 可以做很多事情, 例如 object detection in images, speech recognition, music composition, 而且 不需要安装任何库,也不用一次又一次地编译这些代码。


2. 为什么要在浏览器中运行机器学习算法

TensorFlow.js 可以为用户解锁巨大价值:

  1. 隐私:用户端的机器学习,用来训练模型的数据还有模型的使用都在用户的设备上完成,这意味着不需要把数据传送或存储在服务器上。
  2. 更广泛的使用:几乎每个电脑手机平板上都有浏览器,并且几乎每个浏览器都可以运行JS,无需下载或安装任何应用程序,在浏览器中就可以运行机器学习框架来实现更高的用户转换率,提高满意度,例如虚拟试衣间等服务。
  3. 分布式计算:每次用户使用系统时,他都是在自己的设备上运行机器学习算法,之后新的数据点将被推送到服务器来帮助改进模型,那么未来的用户就可以使用训练的更好的算法了,这样可以减少训练成本,并且持续训练模型。

3. 应用举例:regression

为了很快地看看效果,有下面三种方式:

  1. 可以直接从浏览器里写代码,例如 chrome 的 View > Developer > Javascript Console,
  2. 还可以在线写 有三个流行的在线 JS 平台:CodePen, JSFiddle, JSBin. https://codepen.io/thekevinscott/pen/aGapZL https://jsfiddle.net/ https://jsbin.com/?html,output
  3. 当然还可以在本地把代码保存为.html文件并用浏览器打开

那么先来看一下下面这段代码,可以在 codepen 中运行: https://codepen.io/pen?&editors=1011

这段代码的目的是做个回归预测,

数据集为: 构造符合 Y=2X-1 的几个点, 那么当 X 取 [-1, 0, 1, 2, 3, 4] 时, y 为 [-3, -1, 1, 3, 5, 7],

<html>

 <head>
    <!-- Load TensorFlow.js -->
    <!-- Get latest version at https://github.com/tensorflow/tfjs -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.11.2">   
    </script>
 </head>
 
 <body>
   <div id="output_field"></div>
 </body>
 
 <script>
    async function learnLinear(){
    
        const model = tf.sequential();
        model.add(tf.layers.dense({
            units: 1, 
            inputShape: [1]
        }));
        
        model.compile({
            loss: 'meanSquaredError',
            optimizer: 'sgd'
        });
  
        const xs = tf.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]);
        const ys = tf.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]);
  
        await model.fit(xs, ys, {epochs: 500});
  
        document.getElementById('output_field').innerText =
            model.predict( tf.tensor2d([10], [1, 1]) );
    }
    
    learnLinear();
 </script>
 
<html>
  • 首先是熟悉的 js 的基础结构:
<html>
<head></head>
<body></body>
</html>
        const model = tf.sequential();
        model.add(tf.layers.dense({
            units: 1, 
            inputShape: [1]
        }));
  • 接着定义 loss 为 MSE 和 optimizer 为 SGD:
        model.compile({
            loss: 'meanSquaredError',
            optimizer: 'sgd'
        });
  • 同时需要定义 input 的 tensor,X 和 y,以及它们的维度都是 [6, 1]:
        const xs = tf.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]);
        const ys = tf.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]);
  • 然后用 fit 来训练模型,因为要等模型训练完才能预测,所以要用 await:
        await model.fit(xs, ys, {epochs: 500});
  • 训练结束后,用 predict 进行预测,输入的是 [1, 1] 维的 值为 10 的tensor ,
        document.getElementById('output_field').innerText =
            model.predict( tf.tensor2d([10], [1, 1]) );
  • 最后得到的输出为
Tensor 
[[18.9862976],]

4. 和 tflearn 的代码比较

再来通过一个简单的例子来比较一下 Tensorflow.js 和 tflearn, 可以看出如果熟悉 tflearn 的话,那么 Tensorflow.js 会非常容易上手,


学习资料: https://medium.com/tensorflow/getting-started-with-tensorflow-js-50f6783489b2 https://thekevinscott.com/reasons-for-machine-learning-in-the-browser/ https://www.analyticsvidhya.com/blog/2018/04/tensorflow-js-build-machine-learning-models-javascript/ https://hackernoon.com/introducing-tensorflow-js-3f31d70f5904 https://thekevinscott.com/tensorflowjs-hello-world/


推荐阅读 历史技术博文链接汇总 http://www.jianshu.com/p/28f02bb59fe5 也许可以找到你想要的: [入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

Github 项目推荐 | ANSI C 的简单神经网络库

Genann是一个经过精心测试的库,用于在 C 中训练和使用前馈人工神经网络(ANN)。它的主要特点是简单、快速、可靠和可魔改(hackable),它只需要提供...

9610
来自专栏AI科技大本营的专栏

重磅消息 | 深度学习框架竞争激烈 TensorFlow也支持动态计算图

今晨 Google 官方发布消息,称 TensorFlow 支持动态计算图。 原文如下: 在大部分的机器学习中,用来训练和分析的数据需要经过一个预处理过程,输入...

28450
来自专栏企鹅号快讯

基于自搭建BP神经网络的运动轨迹跟踪控制(二)

1 前言 朋友们~好久没见~。在上一篇基于自搭建BP神经网络的运动轨迹跟踪控制(一)中,首次给大家介绍了如何将BP神经网络模型用于运动控制,并基于matlab做...

30590
来自专栏量子位

无需写代码!谷歌推出机器学习模型分析神器,代号What-If

今天,谷歌推出了已开源的TensorFlow可视化工具TensorBoard中一项新功能:What-If Tool,用户可在不编写程序代码的情况下分析机器学习(...

13530
来自专栏小白课代表

软件分享 | SPSS 22 32位/64位 安装教程

SPSS for Windows是一个组合式软件包,它集数据录入、整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,...

17130
来自专栏CVer

开源 | 深度学习网络模型(model)可视化开源软件Netron

前两天,Amusi分享了一篇 经典卷积神经网络(CNN)结构可视化工具,该工具可用于可视化各种经典的卷积神经网络结构。如AlexNet、VGG-16、ResNe...

1.1K30
来自专栏企鹅号快讯

基于Python的文本情感分类

前言 在上一期《【干货】--手把手教你完成文本情感分类》中我们使用了R语言对酒店评论数据做了情感分类,基于网友的需求,这里再使用Python做一下复现。关于步骤...

30250
来自专栏YoungGy

ML基石_9_LinearRegression

linear regression problem linear regression algorithm 优化问题 求梯度 算法 generalization...

25860
来自专栏XAI

Java分布式神经网络库Deeplearning4j 环境搭建和运行一个例子

DeeplearningforJava简单介绍: deeplearning4j是一个Apache 2.0-licensed,开源的,分布式神经网络库编写的jav...

48180
来自专栏WOLFRAM

Mathematica 11.1.1 中文版已发布

15230

扫码关注云+社区

领取腾讯云代金券