Kmeans算法的Python实现

Kmeans聚类

kmeans

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。动图来源.

k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。

算法步骤:

  • 创建k个点作为起始支点(随机选择)
  • 当任意一个簇的分配结果发生改变的时候
  • 对数据集的每个数据点
    • 对每个质心
      • 计算质心与数据点之间的距离
    • 将数据分配到距离其最近的簇
  • 对每一簇,计算簇中所有点的均值并将其均值作为质心

iris

我们用非常著名的iris数据集。

from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
data = X[:,[1,3]] # 为了便于可视化,只取两个维度
plt.scatter(data[:,0],data[:,1]);

iris

欧式距离

计算欧式距离,我们需要为每个点找到离其最近的质心,需要用这个辅助函数。

def distance(p1,p2):
    """
    Return Eclud distance between two points.
    p1 = np.array([0,0]), p2 = np.array([1,1]) => 1.414
    """
    tmp = np.sum((p1-p2)**2)
    return np.sqrt(tmp)

distance(np.array([0,0]),np.array([1,1]))
1.4142135623730951

随机质心

在给定数据范围内随机产生k个簇心,作为初始的簇。随机数都在给定数据的范围之内dmin + (dmax - dmin) * np.random.rand(k)实现。

def rand_center(data,k):
    """Generate k center within the range of data set."""
    n = data.shape[1] # features
    centroids = np.zeros((k,n)) # init with (0,0)....
    for i in range(n):
        dmin, dmax = np.min(data[:,i]), np.max(data[:,i])
        centroids[:,i] = dmin + (dmax - dmin) * np.random.rand(k)
    return centroids

centroids = rand_center(data,2)
centroids
array([[ 2.15198267,  2.42476808],
       [ 2.77985426,  0.57839675]])

k均值聚类

这个基本的算法只需要明白两点。

  • 给定一组质心,则簇更新,所有的点被分配到离其最近的质心中。
  • 给定k簇,则质心更新,所有的质心用其簇的均值替换

当簇不在有更新的时候,迭代停止。当然kmeans有个缺点,就是可能陷入局部最小值,有改进的方法,比如二分k均值,当然也可以多计算几次,去效果好的结果。

def kmeans(data,k=2):
    def _distance(p1,p2):
        """
        Return Eclud distance between two points.
        p1 = np.array([0,0]), p2 = np.array([1,1]) => 1.414
        """
        tmp = np.sum((p1-p2)**2)
        return np.sqrt(tmp)
    def _rand_center(data,k):
        """Generate k center within the range of data set."""
        n = data.shape[1] # features
        centroids = np.zeros((k,n)) # init with (0,0)....
        for i in range(n):
            dmin, dmax = np.min(data[:,i]), np.max(data[:,i])
            centroids[:,i] = dmin + (dmax - dmin) * np.random.rand(k)
        return centroids
    
    def _converged(centroids1, centroids2):
        
        # if centroids not changed, we say 'converged'
         set1 = set([tuple(c) for c in centroids1])
         set2 = set([tuple(c) for c in centroids2])
         return (set1 == set2)
        
    
    n = data.shape[0] # number of entries
    centroids = _rand_center(data,k)
    label = np.zeros(n,dtype=np.int) # track the nearest centroid
    assement = np.zeros(n) # for the assement of our model
    converged = False
    
    while not converged:
        old_centroids = np.copy(centroids)
        for i in range(n):
            # determine the nearest centroid and track it with label
            min_dist, min_index = np.inf, -1
            for j in range(k):
                dist = _distance(data[i],centroids[j])
                if dist < min_dist:
                    min_dist, min_index = dist, j
                    label[i] = j
            assement[i] = _distance(data[i],centroids[label[i]])**2
        
        # update centroid
        for m in range(k):
            centroids[m] = np.mean(data[label==m],axis=0)
        converged = _converged(old_centroids,centroids)    
    return centroids, label, np.sum(assement)

由于算法可能局部收敛的问题,随机多运行几次,取最优值

best_assement = np.inf
best_centroids = None
best_label = None

for i in range(10):
    centroids, label, assement = kmeans(data,2)
    if assement < best_assement:
        best_assement = assement
        best_centroids = centroids
        best_label = label

data0 = data[best_label==0]
data1 = data[best_label==1]

如下图,我们把数据分为两簇,绿色的点是每个簇的质心,从图示效果看,聚类效果还不错。

fig, (ax1,ax2) = plt.subplots(1,2,figsize=(12,5))
ax1.scatter(data[:,0],data[:,1],c='c',s=30,marker='o')
ax2.scatter(data0[:,0],data0[:,1],c='r')
ax2.scatter(data1[:,0],data1[:,1],c='c')
ax2.scatter(centroids[:,0],centroids[:,1],c='b',s=120,marker='o')
plt.show()

Cluster

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏编程

CNN之文本分类之网络结构

本文主要是基于Yoon Kim的Convolutional Neural Networks for Sentence Classification,用中文重新梳...

2166
来自专栏企鹅号快讯

常用的像素操作算法:Resize、Flip、Rotate

Resize 图像缩放是把原图像按照目标尺寸放大或者缩小,是图像处理的一种。 图像缩放有多种算法。最为简单的是最临近插值算法,它是根据原图像和目标图像的尺寸,计...

39410
来自专栏瓜大三哥

竞争型神经网络续1

1.竞争神经网络函数 1.1创建函数 1.1.1 newc函数 newc函数用于创建一个竞争层,这是一个旧版本的函数,现在用competlayer函数代替。函数...

30210
来自专栏贾志刚-OpenCV学堂

使用OpenCV与sklearn实现基于词袋模型(Bag of Word)的图像分类预测与搜索

基于OpenCV实现SIFT特征提取与BOW(Bag of Word)生成向量数据,然后使用sklearn的线性SVM分类器训练模型,实现图像分类预测。实现基于...

1943
来自专栏TensorFlow从0到N

【译】TensorFlow实现Batch Normalization

原文:Implementing Batch Normalization in Tensorflow 来源:R2RT 译者注:本文基于一个最基础的全连接...

6416
来自专栏自学笔记

Radial Basis Function Network

使用高斯核函数方式把数据维度扩展到无限维度进而得到一条粗壮的分界线。仔细看一下这个分割函数,其实就是一些Gaussian函数的线性组合,y就是增长的方向。 ...

1302
来自专栏有趣的Python

6- 深度学习之神经网络核心原理与算法-学习率

932
来自专栏ml

深度学习之图像的数据增强

   在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强, 数据增强,常用的方式,就是旋转图...

7287
来自专栏人工智能LeadAI

数据预处理 | 机器学习之特征工程

作者:苏小保(jacksu) 华为工程师 擅长分布式系统、大数据、机器学习。github地址:https://github.com/jacksu 通过特征提取,...

3899
来自专栏技术与生活

深度学习之卷积

今日休假,把卷积神经网络梳理下。先从一些基本概念入手,什么是卷积?为什么叫这么个名字? 搜索了一遍,网上有很多人已经表述的非常好了,这里用自己理解的语言重述下。

842

扫码关注云+社区