DAY18:阅读纹理内存之Layered Textures

3.2.11.1.3. 16-Bit Floating-Point Textures

The 16-bit floating-point or half format supported by CUDA arrays is the same as the IEEE 754-2008 binary2 format.

CUDA C does not support a matching data type, but provides intrinsic functions【内联函数】 to convert to and from the 32-bit floating-point format via the unsigned short type: __float2half_rn(float) and __half2float(unsigned short). These functions are only supported in device code. Equivalent functions【等价函数】 for the host code can be found in the OpenEXR library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching before any filtering is performed.

A channel description for the 16-bit floating-point format can be created by calling one of the cudaCreateChannelDescHalf*() functions.

3.2.11.1.4. Layered Textures

A one-dimensional or two-dimensional layered texture (also known as texture array in Direct3D and array texture in OpenGL) is a texture made up of a sequence of layers, all of which are regular textures of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-point texture coordinate; the index denotes a layer within the sequence and the coordinate addresses a texel within that layer. A two-dimensional layered texture is addressed using an integer index and two floating-point texture coordinates; the index denotes a layer within the sequence and the coordinates address a texel within that layer.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in tex1DLayered(), tex1DLayered(), tex2DLayered(), and tex2DLayered(). Texture filtering (see Texture Fetching) is done only within a layer, not across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.

本文备注/经验分享:

16-Bit Floating-Point Textures 这部分内容因为我们从来没用过,所以没有好补充的...

 Layered Textures——

这个等于纹理数组(某种意义上),和普通的3D的CUDA Array不同。这个层和层之间是独立的。插值的时候不跨层。 而存储的时候也*可能*每层存储为单独的像2D的纹理那样的布局(4个元素临近在一起),而不是3D那样的8个。例如说, 你有一堆图片的时候,例如PhotoShop之类的软件可以用来做多个图层。 可以总是看成是一堆图层的。而直接的3D纹理会导致层与层之前有关系,而这个只是一堆图片而已。

A one-dimensional layered texture is addressed using an integer index and a floating-point texture coordinate; the index denotes a layer within the sequence and the coordinate addresses a texel within that layer. 这个是1D的, 和2D一个道理, 纹理内部(一张图片内部你可以理解)坐标是float的。而层的坐标是整数的,例如: 第3层, 第2层图片,而不会像是普通的2D(相比1D的layered的)或者3D纹理(相比2D的Layered)那样,虽然大家都是2个坐标和3个坐标。 但含有Layered的字样的纹理最后一个坐标不是纹理内部的, 而是代表层次,因为我们普通的2D和3D的可以随时插值, 允许最后一个坐标是1.2, 3.4这种浮点值,而Layered的最后一个坐标是整数值,这首先暗示里这个纹理不同, 最后一个坐标不是纹理内部的坐标, 也不能用来插值,其次说明不存在层次间的关系, 没有第1.5层之类的说法。我建议你总是将Layered的理解成纹理数组,这样好理解很多。

有不明白的地方,请在本文后留言

或者在我们的技术论坛bbs.gpuworld.cn上发帖

原文发布于微信公众号 - 吉浦迅科技(gpusolution)

原文发表时间:2018-05-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏yw的数据分析

gplots heatmap.2和ggplot2 geom_tile实现数据聚类和热图plot

主要步骤 ggplot2 数据处理成矩阵形式,给行名列名 hclust聚类,改变矩阵行列顺序为聚类后的顺序 melt数据,处理成ggplot2能够直接处理的数据...

4447
来自专栏崔庆才的专栏

自然语言处理中句子相似度计算的几种方法

在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题...

3253
来自专栏有趣的Python

3- OpenCV+TensorFlow 入门人工智能图像处理-TensorFlow入门

tensorflow基础入门 思考一个问题: 如何刚好学习TensorFlow 类比为一门开发语言,学会语法,api的调用, 原理性掌握。 语言的要素: 基础...

9218
来自专栏深度学习与计算机视觉

算法-从1,...,99,2015这100个数中任意选择若干个数(可能为0个数)求异或,试求异或的期望值

题目: 从1,2,3,…..98,99,2015这100个数中任意选择若干个数(可能为0个数)求异或,试求异或的期望值。 解题思路: 这是阿里巴巴的...

22610
来自专栏PPV课数据科学社区

【工具】SAS 常用函数汇总

? 一、数学函数 ABS(x) 求x的绝对值。 MAX(x1,x2,…,xn) 求所有自变量中的最大一个。 MIN(x1,x2,…,xn) 求所有自变量...

2563
来自专栏WD学习记录

n-gram

N-Gram是大词汇连续语音识别中常用的一种语言模型,对中文而言,我们称之为汉语语言模型(CLM, Chinese Language Model)。汉语语言模型...

973
来自专栏人工智能

人工智能AI(5):线性代数之矩阵、线性空间

在前面的篇幅中,我们简单的介绍过矩阵的定义,按照原计划本来,今天准备写特征分解以及奇异值分解,但是发现这其中涉及到比较多的矩阵相关的知识,所以在讨论这些问题之前...

2505
来自专栏小小挖掘机

使用Seq2Seq+attention实现简单的Chatbot

本文代码的github连接:https://github.com/princewen/tensorflow_practice/tree/master/chat_...

2.9K6
来自专栏崔庆才的专栏

自然语言处理中句子相似度计算的几种方法

在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题...

4.3K6
来自专栏软件开发 -- 分享 互助 成长

最小生成树-Prim算法和Kruskal算法

Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里...

29210

扫码关注云+社区