Cell:荧光标记out了,AI不用“侵入”也能识别细胞死活和类型

转自:大数据文摘|BigDataDigest

编译:蒋宝尚、龙牧雪 (生信宝典略有修改)

4月12号,一项谷歌和生物医学研究机构Gladstone Institutes合作的有关“电子标记”的研究成果发表在了著名期刊Cell上。

论文链接:

https://www.sciencedirect.com/science/article/pii/S0092867418303647

一个“神经网络”的超人表现

电子标记,指使用计算机直接识别未被标记的图像中细胞的特征。

用这种方法,计算机可以发现和预测未标记细胞图像中的特征。这一方法使得科学家获得了很多的隐藏信息,从而大大推动了生物医学研究的进步。

“我们用同一细胞的两张不同状态的图像来训练神经网络,一张是未标记的,另一张带有荧光标记,”Google Accelerated Science软件工程师Christiansen解释说,“我们重复了这个过程数百万次,然后,我们用神经网络模型识别未标记的那一张图片时,发现它可以准确预测出荧光标签所属的位置。”

当神经网络识别细胞是否还活着的时候,可以达到98%的正确率。它甚至能够在一堆活细胞中分辨出单个死细胞。相比之下,人类只有80%的正确率。

事实上,即使有经验的生物学家在对同一细胞的图片识别两次的时候,也可能给出不同的答案。

Finkbeiner和Nelson认识到,一旦经过数据训练,神经网络就可以继续提高性能,提高处理任务的能力和速度。

该模型还能区分不同的细胞类型。例如,神经网络可以识别混合细胞中的神经元。甚至可以更进一步判断神经元的延伸是轴突还是树突

Nelson说:“模型学到的越多,学习新的类似任务所需的数据就越少。这种迁移学习,即从一个环境中学到的知识用来帮助新环境中的学习任务,一直是人工智能面临的巨大挑战。通过将以前的经验应用于新的任务,我们的神经网络可以继续得到改进。”

“这种方法有可能从根本上改变生物医学研究,”美国国家神经疾病和中风研究所的Margaret Sutherland说,“研究人员正在生成大量的数据,对于神经科学家来说,这意味着训练机器来帮助分析这些信息,可以帮助我们更快地理解大脑细胞是如何组合在一起的,以及理解与药物开发有关的应用。”

实战机器学习见生信宝典之前发表过的:莫烦Python机器学习

生物学和人工智能的碰撞

10年前,Finkbeiner和他的团队在Gladstone发明了一种全自动机器人显微镜。这一显微镜可以追踪细胞数小时,数天甚至数月。由于它每天产生3-5TB的数据,因此他们开发了强大的统计算法来分析这些数据。

鉴于收集到的数据的规模和复杂性,Finkbeiner开始研究深度学习,希望通过提供人类无法发现的洞察力来来帮助他分析数据。然后,谷歌找到了他。因为谷歌一直是人工智能领域的“扛把子”,并在神经网络算法方面有着绝对的权威。所以Finkbeiner决定与谷歌通力合作。

“我们想要利用我们对机器学习的热情来解决一些复杂问题,”Google Accelerated Science主管Philip Nelson说,“与Gladstone合作是一个极好的机会,我们可以利用我们的人工智能知识来帮助其他领域的科学家,这给社会带来切实的利益。”

这一合作可谓强强联合。Finkbeiner需要先进的计算机科学知识。谷歌需要一个生物医学研究项目产生相关数据,来帮助他们训练模型。

Finkbeiner最初尝试过使用现有的软件解决方案,但成效有限。这一次,谷歌帮助他的团队使用TensorFlow定制了一个模型,就有了上面的发现。

深度学习可以改变生物医学

从智能手机到自动驾驶汽车,深度学习在领域内的应用几乎已经司空见惯。但对于不熟悉人工智能技术的生物学家来说,在实验室中使用人工智能作为工具是很难理解的。

深度学习在生物学上的潜在应用是无穷无尽的。在他的实验室里,Finkbeiner正试图寻找新的方法来诊断和治疗神经性疾病,如阿尔茨海默病、帕金森病等。

Finkbeiner说:“对于90%的患者来说,我们仍然不清楚疾病的确切原因,更有甚者,我们甚至不知道我们是否可以将这些疾病分为不同的类型。”

“深度学习工具可以帮助我们找到这些问题的答案,这对我们研究疾病的方式和我们进行临床试验的方式都有着巨大的影响。”

在不知道疾病分类的情况下,一种药物可能在错误的患者群体上检测时是有效的,并且实际上在针对其他不同患者群体时无效。

利用诱导多能干细胞技术,科学家可以将患者自身的细胞与他们的临床信息相匹配,而深度神经网络可以找到这两个数据集之间的内在联系,帮助找出一组细胞特征相似的患者,并将其与适当的治疗方法相匹配。

借助人工智能,可以从图像中获得几乎无限数量的特征信息。人类想象力的极限有可能是限制获得这些数据的唯一因素。

原文链接:

https://phys.org/news/2018-04-deep-superhuman-cells.html

原文发布于微信公众号 - 生信宝典(Bio_data)

原文发表时间:2018-04-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智慧建筑

人工智能

在智慧建筑项目中会接触到一些AI相关的功能。人脸识别是其中最常用的算法,基本是每个项目标配。今天就从人脸识别入手谈谈AI在实际项目中的使用情况。

1864

实用的机器学习问题

什么是机器学习?我们也许可以阅读机器学习的权威定义,实际上,机器学习由解决的问题来定义。因此,理解机器学习的最好的方法就是看一些例题。

3187
来自专栏新智元

实现无监督学习?谷歌雇百名语言学家为训练数据“镀金”

【新智元导读】自然语言处理大师 Fred Jelinek 有一句名言:“我每开除一名语言学家,我的语音识别系统错误率就降低一个百分点。”不过,在谷歌搜索 app...

35010
来自专栏量子位

纯新手入门机器/深度学习自学指南(附一个月速成方案)

准备用三个月入门,和想要一个月速成,肯定是截然不同的路径。当然我建议大家稳扎稳打,至少可以拿出五个月的时间来学好机器学习的基础知识。

981
来自专栏大数据文摘

数据科学中的“数据智慧”

17710
来自专栏人工智能快报

根据达尔文进化论,只有最强人工智能算法才能生存

国际财经媒体Quartz报道,据谷歌和美国“开放人工智能实验室”(OpenAI)的一项研究,类达尔文进化论的神经进化理论可以帮助人工智能算法进化优化。 现代人工...

3669
来自专栏机器之心

前沿 | 生物神经网络与机器学习的碰撞,Nature论文提出DNA试管网络识别手写数字

科学家们已经从 DNA 中开发出一种人工神经网络,能够识别嘈杂和高度复杂的分子信息。

1192
来自专栏大数据文摘

业界 | Cell最新:荧光标记out了,谷歌靠算法不用“侵入”也能识别细胞特征

1708
来自专栏腾讯大数据的专栏

浅谈大数据应用研究的3个V

To knowledge是目标,手段还是mining,俗称数据民工。每当大家讲到大数据,都会不约而同的提到大数据几个V的定义:Volume,Variety,Ve...

2058
来自专栏数据派THU

【独家】微软郑宇:大数据驱动智能城市讲座精华(附PPT)

[导读]本文整理自微软亚洲研究院“城市计算”领域负责人郑宇博士近期在清华大数据讲座上的分享内容。郑宇主持研发的Urban Air首次利用大数据来监测和预报细粒度...

3058

扫码关注云+社区