Matplotlib可视化Pyplot Tutorial

Pyplot Tutorial

Import

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Basic Plot

plt.plot([1,2,3,4]) # basic plot
plt.ylabel("some num")
plt.show()

Basic Plot

plt.plot([1,2,3,4],[1,4,9,16]) # plot x versus y
plt.show()

Add Some Style

# borrowed from Matlab
plt.plot([1,2,3,4], [1,4,9,16], 'ro')
plt.axis([0, 6, 0, 20]) # [xmin, xmax, ymin, ymax] 
plt.show()
t = np.arange(0.,5.,0.2)
# more style here
# http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
plt.plot(t,t,'r--', t,t**2,'bs', t,t**3,'g^')
plt.show()

Multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting commands apply to the current axes. The function gca() returns the current axes (a matplotlib.axes.Axes instance), and gcf() returns the current figure (matplotlib.figure.Figure instance).

def f(t):
    return np.exp(-t)*np.cos(2*np.pi*t)
t1 = np.arange(0.0,5.0,0.1)
t2 = np.arange(0.0,5.0,0.02)
plt.figure(1)
# The subplot() command specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k');
plt.subplot(212)
plt.plot(t2,np.cos(2*np.pi*t2),'r--');
plt.figure(1)                # the first figure
plt.subplot(211)             # the first subplot in the first figure
plt.plot([1, 2, 3])
plt.subplot(212)             # the second subplot in the first figure
plt.plot([4, 5, 6])

plt.figure(2)                # a second figure
plt.plot([4, 5, 6])          # creates a subplot(111) by default

plt.figure(1)                # figure 1 current; subplot(212) still current
plt.subplot(211)             # make subplot(211) in figure1 current
plt.title('Easy as 1, 2, 3'); 

More method on figure and axes:

  • You can clear the current figure with clf() and the current axes with cla().
  • The memory required for a figure is not completely released until the figure is explicitly closed with close().

Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and title() are used to add text in the indicated locations.

mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)

n, bins, patches = plt.hist(x,50,normed=1,facecolor='g',alpha=0.75)
plt.xlabel('Smarts')
plt.ylabel('Probablity')
plt.title('Histogram of IQ')
plt.text(60,.025,r'$\mu=100,\ \sigma=15$')
plt.axis([40,160,0,0.03])
plt.grid(True)
plt.show()

Basic figure features

Moving spines

Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions and until now, they were on the border of the axis. We'll change that since we want to have them in the middle. Since there are four of them (top/bottom/left/right), we'll discard the top and right by setting their color to none and we'll move the bottom and left ones to coordinate 0 in data space coordinates.

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C,S = np.cos(X), np.sin(X)

# new figure
plt.figure(figsize=(10,6),dpi=80)

# add style
plt.plot(X,C,color='blue',linewidth=2.5,linestyle='-',label="cosine")
plt.plot(X,S,color='red',linewidth=2.5,linestyle='-',label="sine")

# setting limits
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.ylim(C.min()*1.1,C.max()*1.1)

# setting ticks
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],
          [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1,0,1],
          [r'$-1$', r'$0$', r'$+1$'])

# moving spines
ax = plt.gca() # get current axis
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

# legend
plt.legend(loc='upper left',frameon=False)

# annotate some points
t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.cos(t),],50,color='blue')
plt.annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
             xy=(t, np.cos(t)), xycoords='data',
             xytext=(-90, -50), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

# make label bigger
for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(16)
    label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 ))

plt.show()

More Types

Regular Plot

# plt.fill_between(x, y1, y2=0, where=None)
# x : array
#     An N-length array of the x data
# y1 : array
#     An N-length array (or scalar) of the y data
# y2 : array
#     An N-length array (or scalar) of the y data

n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X)

plt.plot(X,Y+1,color='blue',alpha=1.00)
plt.fill_between(X,1,Y+1,color='blue',alpha=.25) # x, y1, y2

plt.plot(X,Y-1,color='blue',alpha=1.00)
plt.fill_between(X,-1,Y-1,(Y-1)>-1,color='blue',alpha=.25) # where condition
plt.fill_between(X,-1,Y-1,(Y-1)<-1,color='red',alpha=.25)

plt.xlim(-np.pi,np.pi), plt.xticks([])
plt.ylim(-2.5,2.5), plt.yticks([])
plt.show()

Scatter Plots

n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
T = np.arctan2(Y,X)

plt.axes([0.025,0.025,0.95,0.95])
plt.scatter(X,Y,c=T,alpha=.5) #color

plt.xlim(-2,2), plt.xticks([])
plt.ylim(-2,2), plt.yticks([])

plt.show()

Bar Plots

n = 12
X = np.arange(n)
Y1 = (1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n))*np.random.uniform(0.5,1.0,n)

plt.axes([0.025,0.025,0.95,0.95])
plt.bar(X,+Y1,facecolor='#9999ff',edgecolor='white')
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='white')

# Make an iterator that aggregates elements from each of the iterables.
# Returns an iterator of tuples, where the i-th tuple contains
# the i-th element from each of the argument sequences or iterables.
for x,y in zip(X,Y1):
    plt.text(x+0.4, y+0.05, '%.2f' % y, ha='center', va= 'bottom')

for x,y in zip(X,-Y2):
    plt.text(x+0.4, y-0.05, '%.2f'%y,ha='center',va='top')

plt.xlim([-.5,n]), plt.xticks([])
plt.ylim([-1.25,1.25]), plt.yticks([])
plt.show()

Contour Plots

def f(x,y): return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 256
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y)
# np.meshgrid(*xi, **kwargs), Return coordinate matrices from coordinate vectors.

C = plt.contourf(X,Y,f(X,Y),8,alpha=.75,cmap='jet')
C = plt.contour(X, Y, f(X,Y), 8, colors='black', linewidth=.5)
plt.clabel(C, inline=1, fontsize=10)
# plt.clabel(CS, *args, **kwargs) Label a contour plot.

plt.xticks([]), plt.yticks([])
plt.show()

Imshow

def f(x,y): return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 10
x = np.linspace(-3,3,4*n)
y = np.linspace(-3,3,3*n)
X,Y = np.meshgrid(x,y)
Z = f(X,Y)
plt.axes([0.025,0.025,0.95,0.95])
plt.imshow(Z,interpolation='nearest',cmap='bone',origin='lower')
plt.colorbar(shrink=0.9)
plt.xticks([])
plt.yticks([])
plt.show()

Pie Charts

n = 20
Z = np.ones(n)
Z[-1] *= 2
plt.axes([0.025,0.025,0.95,0.95])
plt.pie(Z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
plt.gca().set_aspect('equal')
plt.xticks([]), plt.yticks([])
plt.show()

Quiver Plots

n = 8
X,Y = np.mgrid[0:n,0:n]
T = np.arctan2(Y-n/2.0,X-n/2.0)
R = 10+np.sqrt((Y-n/2.0)**2+(X-n/2.0)**2)
U,V = R*np.cos(T), R*np.sin(T)
plt.axes([0.025,0.025,0.95,0.95])

plt.quiver(X,Y,U,V,R,alpha=.5)
plt.quiver(X,Y,U,V,edgecolor='k',facecolor='None',linewidth=0.5)

plt.xlim([-1,n]),plt.xticks([])
plt.ylim([-1,n]),plt.yticks([])
plt.show()

Grids

ax = plt.axes([0.025,0.025,0.95,0.95])

ax.set_xlim(0,4)
ax.set_ylim(0,3)

ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.xaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.yaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.yaxis.set_minor_locator(plt.MultipleLocator(0.1))

ax.grid(which='major', axis='x', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='-', color='0.75')
ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='-', color='0.75')

ax.set_xticklabels([]) # diff between set_xticks([])
ax.set_yticklabels([]) # with little vertical lines

plt.show()

Multi Plots

fig = plt.figure()
fig.subplots_adjust(bottom=0.025,left=0.025,top=0.975,right=0.975)
plt.subplot(2,1,1) # subplots shape (2,1)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,4) # subplots shape(2,3)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,5)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,6)
plt.xticks([]), plt.yticks([])
plt.show()

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏跟着阿笨一起玩NET

c# 使用timer定时器操作,上次定时到了以后,下次还未执行完怎么处理

------解决方案-------------------------------------------------------- 开始的时候,禁用定时器,你...

2631
来自专栏一个会写诗的程序员的博客

java.base.jmod

/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/jmods$ jmod list java....

1112
来自专栏我和未来有约会

简练的视图模型 ViewModel

patterns & practices Developer Center 发布了 Unity Application Block 1.2 for Silver...

2169
来自专栏linux驱动个人学习

高通Audio中ASOC的machine驱动

ASoC被分为Machine、Platform和Codec三大部分,其中的Machine驱动负责Platform和Codec之间的耦合以及部分和设备或板子特定的...

9664
来自专栏码匠的流水账

聊聊HystrixCommandExecutionHook

hystrix-core-1.5.12-sources.jar!/com/netflix/hystrix/strategy/executionhook/Hyst...

652
来自专栏WOLFRAM

向日葵中的数学之美

1823
来自专栏marsggbo

Udacity并行计算课程 CS344 编程作业答案

832
来自专栏Hadoop数据仓库

Oracle sqlldr 如何导入一个日期列

1. LOAD DATA INFILE * INTO TABLE test FIELDS TERMINATED BY X'9' TRAILING NULLCO...

1786
来自专栏专知

2018年SCI期刊最新影响因子排行,最高244,人工智能TPAMI9.455

2018年6月26日,最新的SCI影响因子正式发布,涵盖1万2千篇期刊。CA-Cancer J Clin 依然拔得头筹,其影响因子今年再创新高,达244.585...

1272
来自专栏WOLFRAM

错觉艺术的巅峰,错觉图形大师M.C. Escher的不可能方块的可能模型

1333

扫码关注云+社区