儿童节 | 如何向5岁小朋友解释神经网络?这个Reddit回答获得了5k+赞

大数据文摘出品

编译:小鱼、龙牧雪

如何向5岁小朋友解释神经网络?

Reddit有位叫做kouhoutek的大咖给出了一个超棒的答案,获得了200+条评论,6700+点赞,还吸引来了各种技术大牛的互相讨论!

答案:谁叫得响,谁说了算

想象这样一个场景:

你当教练的球队刚刚赢得了比赛,你问队员们是否想出去吃披萨或汉堡包庆祝一下。每个孩子都开始尖叫自己喜欢的食物,最后,你会选择带孩子们去吃呼声最高的那种食物。

这基本上就是一个多层神经网络的工作原理。顶层节点接收输入信息,然后每个节点都会检测输入信号的某个属性,比如,多数孩子喜欢吃汉堡,汉堡这一属性在此次食物争霸赛中所占的权值越大,针对这种食物的欢呼声就越大。

类似的还有,你会听到来自不同“节点”的不同音量的叫声:“它颜色很深!”,“它是红色的!”,“它是圆的!” 接着,下一级节点会根据刚才听到的内容喊出更复杂的特征:“它有一张脸!”,“它有毛皮!”,直到最后,会听到有个声音喊道“这是一只小猫!”。

有意思的是,并没有人告诉孩子们什么时候开始尖叫,完全是基于孩子们行动后的反馈。你的小队员们决定去吃汉堡,结果吃完发现有队员生病了。下周,他们可能不会吵着要吃汉堡,汉堡的呼声也没有第一次那么高。他们已经建立了共识,吃汉堡可能不是一个很好的选择,并且会有意避开这个选择。

神经网络也是基于相同的原理进行训练。你用大量的小猫图片和非小猫图片对网络进行训练。如果识别结果正确的话,该节点的权值会增加,所以对于类似输入,网络能更准确的识别出小猫的图片。如果识别结果错误,将会减小该节点的权值。最初,网络的识别结果是随机的,但是如果你设计正确,它会随着节点的调整而变得越来越好。所以,经常会遇到这种情况:你设计的神经网络运行效果很棒,但你却无法解释它的工作原理。

评论里将这个比喻扩展到RNN

同样,我们可以用上面那个很棒的比喻来解释RNN。

假设你的球队要做的决策不再是选择食物这么简单,而是要对正在进行的一系列运动做出判断。 例如,假设球队正在进行棒球比赛。球队中每个队员对赛况都有不同的个人见解,并且在任何时候他们都可以协作对当前的状况做出判断,并据此采取具体行动。

同样,这种决策也是基于反馈进行不断学习。一旦球队完成了一场比赛,球员们可以一起回顾比分,并作出一些分析:“比利需要靠近内场”等等,球员会相应地做出反应。随着赛季的进行,球队的成绩会变得越来越好!

“叫声”比喻的作者也说道,他的比喻和1957年的一篇文章Pandemonium: A Paradigm for Learning中提出的一个字符识别的比喻很接近。在那个比喻里,尖叫的是“小恶魔”节点们。

相关报道:

https://www.reddit.com/r/explainlikeimfive/comments/7buzbs/eli5_what_are_neural_networks_specifically_rnns/

https://wolfe4e.sinauer.com/wa04.02.html

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2018-06-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

来看一场 AI 重建的 3D 全息世界杯比赛!

831
来自专栏人工智能头条

AMiner背后的技术细节与挑战

1166
来自专栏机器之心

独家|专访深度好奇创始人吕正东:通向理解之路

机器之心原创 作者:虞喵喵 「理解应该是对应于某一个特定场景下的语用」。 在斯坦福大学计算机科学与语言学教授 Christopher Manning 2015 ...

2734
来自专栏大数据挖掘DT机器学习

如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间...

3705
来自专栏量子位

全程中文!谷歌发布机器学习速成课,完全免费(附视听评测)

全球AI第一大厂Google推了新课程! ? Google今天上线了一个“机器学习速成课程”,英文简称MLCC。用他们自己的话来形容,这个课程节奏紧凑、内容实用...

3365
来自专栏大数据挖掘DT机器学习

如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的...

2807
来自专栏AI科技大本营的专栏

CCAI 2017 | 机器学习先驱Thomas Dietterich:如何构建强健的人工智能—原因及方式

俄勒冈州立大学教授、AAAI 前主席 Thomas G. Dietterich 文/CSDN周翔 7 月22 - 23 日,由中国人工智能学会、阿里巴巴集团 &...

3577
来自专栏新智元

对于 tractable tasks,机器学习很难胜过专家

我们 “语义计算” 群在讨论这个句子的句法结构:The asbestos fiber, crocidolite, is unusually resilient ...

2565
来自专栏浮生的专栏

机器学习为更好的火灾现场安全

当勇敢的消防员身处险境试图抢救其他人和他们的财产的时候,他们的生命同样受到了威胁。在这篇文章中,我想分享我在AAIA第15届数据挖掘竞赛中的经验和获奖策略:给火...

2004
来自专栏大数据文摘

在咖啡桌上看世界杯!FB和谷歌刚刚在CVPR联合发布AR看球新方式

1066

扫码关注云+社区