机器学习实战之Logistic回归

写在前面

Logistic回归涉及到高等数学,线性代数,概率论,优化问题。本文尽量以最简单易懂的叙述方式,以少讲公式原理,多讲形象化案例为原则,给读者讲懂Logistic回归。如对数学公式过敏,引发不适,后果自负。

Logistic回归原理与推导

Logistic回归中虽然有回归的字样,但该算法是一个分类算法,如图所示,有两类数据(红点和绿点)分布如下,如果需要对两类数据进行分类,我们可以通过一条直线进行划分(w0 * x0 + w1 * x1+w2 * x2)。当新的样本(x1,x2)需要预测时,带入直线函数中,函数值大于0,则为绿色样本(正样本),否则为红样本(负样本)。 推广到高维空间中,我们需要得到一个超平面(在二维是直线,在三维是平面,在n维是n-1的超平面)切分我们的样本数据,实际上也就是求该超平面的W参数,这很类似于回归,所以取名为Logistic回归。

sigmoid函数

当然,我们不直接使用z函数,我们需要把z值转换到区间[0-1]之间,转换的z值就是判断新样本属于正样本的概率大小。 我们使用sigmoid函数完成这个转换过程,公式如下。通过观察sigmoid函数图,如图所示,当z值大于0时,σ值大于0.5,当z值小于0时,σ值小于于0.5。利用sigmoid函数,使得Logistic回归本质上是一个基于条件概率的判别模型。

目标函数

其实,我们现在就是求W,如何求W呢,我们先看下图,我们都能看出第二个图的直线切分的最好,换句话说,能让这些样本点离直线越远越好,这样对于新样本的到来,也具有很好的划分,那如何用公式表示并计算这个目标函数呢?

我们把sigmoid公式应用到z函数中:

通过条件概率可推出下面公式,对公式进行整合为一个,见下。

假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积:

这个公式过于复杂,不太容易求导,这里通过log转换:

这时就需要这个目标函数的值最大,以此求出θ。

梯度上升法

在介绍梯度上升法之前,我们看一个中学知识:求下面函数在x等于多少时,取最大值。

函数图:

解:求f(x)的导数:2x,令其为0,求得x=0时,取最大值为0。但在函数复杂时,求出导数也很难计算函数的极值,这时就需要使用梯度上升法,通过迭代,一步步逼近极值,公式如下,我们顺着导数的方向(梯度)一步步逼近。

利用梯度算法计算该函数的x值:

def f(x_old):
         return -2*x_old
    
def cal():
     x_old  = 0
     x_new = -6
     eps = 0.01
     presision = 0.00001
     while abs(x_new-x_old)>presision:
        x_old=x_new
        x_new=x_old+eps*f(x_old)
     return x_new

-0.0004892181072978443
目标函数求解

这里,我们对函数求偏导,得到迭代公式如下:

Logistic回归实践

数据情况

读入数据,并绘图显示:

def loadDataSet():
    dataMat = [];labelMat = []
    fr = open('数据/Logistic/TestSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
训练算法

利用梯度迭代公式,计算W:

def sigmoid(inX):
    return 1.0/(1 + np.exp(-inX))

def gradAscent(dataMatIn, labelMatIn):
    dataMatrix = np.mat(dataMatIn)
    labelMat = np.mat(labelMatIn).transpose()
    m,n = np.shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

通过计算的weights绘图,查看分类结果:

16.png

算法优缺点

  • 优点:易于理解和计算
  • 缺点:精度不高

写在最后

最近在运营自己的原创公众号,以后文章会在公众号首发,希望各位读者多多关注支持。 万水千山总是情,点波关注行不行。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习原理

机器学习(16)——EM算法示例

算法思想:含有隐变量的极大似然估计 我们经常会从样本观察数据中,找出样本的模型参数。 最常用的方法就是极大化模型分布的对数似然函数。 但是在一些情况下,我们得到...

3118
来自专栏AI科技大本营的专栏

何恺明团队推出Mask^X R-CNN,将实例分割扩展到3000类

翻译 | AI科技大本营(ID:rgznai100) 参与 | shawn,刘畅 今年10月,何恺明的论文“Mask R-CNN”摘下ICCV 2017的最佳...

47811
来自专栏智能算法

图像金字塔分层算法

一. 图像金字塔概述 1. 图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。 2. 图像金字塔最初用...

3646
来自专栏机器之心

教程 | 如何通过牛顿法解决Logistic回归问题

选自TLP 机器之心编译 参与:Nurhachu Null、黄小天 本文介绍了牛顿法(Newton's Method),以及如何用它来解决 logistic 回...

3285
来自专栏计算机视觉战队

特征金字塔特征用于目标检测

前言: 这篇文章主要使用特征金字塔网络来融合多层特征,改进了CNN特征提取。作者也在流行的Fast&Faster R-CNN上进行了实验,在COCO数据集上测...

3427
来自专栏专知

【计算机视觉】检测与分割详解

【导读】神经网络在计算机视觉领域有着广泛的应用。只要稍加变形,同样的工具和技术就可以有效地应用于广泛的任务。在本文中,我们将介绍其中的几个应用程序和方法,包括语...

833
来自专栏PPV课数据科学社区

【V课堂】R语言十八讲(十)–OLS回归

前面讲到了假设检验,可以检验某个简单的结论,判断两个总体是否显著不同,今天,讲统计学中非常经典的一个知识,这就是回归,回归的分类很多,今天主要讲其中...

2496
来自专栏AI研习社

深度学习在文本分类中的应用

近期阅读了一些深度学习在文本分类中的应用相关论文(论文笔记:http://t.cn/RHea2Rs ),同时也参加了 CCF 大数据与计算智能大赛(BDCI)2...

4716
来自专栏小鹏的专栏

trick—Data Augmentation

海康威视经验 ?         数据增强对最后的识别性能和泛化能力都有着非常重要的作用。我们使用下面这些数据增强方法。第一,对颜色的数据增强,包括色彩的饱和...

4186
来自专栏有趣的Python和你

机器学习实战之Logistic回归

Logistic回归涉及到高等数学,线性代数,概率论,优化问题。本文尽量以最简单易懂的叙述方式,以少讲公式原理,多讲形象化案例为原则,给读者讲懂Logistic...

1403

扫码关注云+社区