首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >支持向量机原理讲解(一)

支持向量机原理讲解(一)

作者头像
磐创AI
发布2018-07-03 16:06:58
6590
发布2018-07-03 16:06:58
举报

磐创AI

专注分享原创AI技术文章

作者 | Ray

编辑 | 磐石

出品 | 磐创AI技术团队

【磐创AI导读】:本文详细剖析了SVM的原理与公式推导。欢迎大家点击上方蓝字关注我们的公众号:磐创AI

介绍

支持向量机(Support Vector Machine,以下简称SVM),作为传统机器学习的一个非常重要的分类算法,它是一种通用的前馈网络类型,最早是由Vladimir N.Vapnik 和 Alexey Ya.Chervonenkis在1963年提出,目前的版本(soft margin)是Corinna Cortes 和 Vapnik在1993年提出,1995年发表。深度学习(2012)出现之前,如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。

SVM本来是一种线性分类和非线性分类都支持的二元分类算法,但经过演变,现在也支持多分类问题,也能应用到了回归问题。本篇文章重点讲解线性支持向量机的模型原理和目标函数优化原理。

目录

  • 感知机模型
  • 理解线性支持向量机

一、感知机模型

在讲解SVM模型之前,我们可以先简单了解感知机模型的原理,因为这两个模型有一些相同的地方。在二维平面中,感知机模型是去找到一条直线,尽可能地将两个不同类别的样本点分开。同理,在三维甚至更高维空间中,就是要去找到一个超平面。定义这个超平面为wTx+b=0(在二维平面中,就相当于直线w_1*x+w_1*y+b=0),而在超平面上方的点,定义为y=1,在超平面下方的点,定义为y=-1。而这样的超平面可能是不唯一的,那么感知机是怎么定期最优超平面呢?从感知机模型的目标函数中,我们了解到它是希望让所有误分类的点(定义为M)到超平面的距离和最小。其目标函数如下:

(注:加入y_i是因为点若在超平面下,w*x_i+b为负数,需要乘上对应的y)

当w和b成比例增加了之后,比如都扩大N倍,会发现,分子和分母都会同时扩大N倍,这对目标函数并不影响。因此,当我们将W扩大或缩小一定倍数使得,||w||=1,分子也会相应的扩大或缩小,这样,目标函数就能简化成以下形式:

这个思想将会应用到支持向量机的目标函数优化上,后文将会详细讲解。

二、理解线性支持向量机

2.1 线性支持向量机思想

正如上文所说,线性支持向量机的思想跟感知机的思想很相似。其思想也是对给定的训练样本,找到一个超平面去尽可能的分隔更多正反例。不同的是其选择最优的超平面是基于正反例离这个超平面尽可能远。

线性支持向量机模型

从上图可以发现,其实只要我们能保证距离超平面最近的那些点离超平面尽可能远,就能保证所有的正反例离这个超平面尽可能的远。因此,我们定义这些距离超平面最近的点为支持向量(如上图中虚线所穿过的点)。并且定义正负支持向量的距离为Margin。

2.2 函数间隔和几何间隔

对SVM思想有一定理解之后,设超平面为wTx+b=0。我们讲解一下函数间隔和几何间隔的区别。

给定一个样本x,|wTx+b|表示点x到超平面的距离。通过观察wTx+b和y是否同号,我们判断分类是否正确。所以函数间隔定义γ’为:

而函数间隔不能正常反应点到超平面的距离,因为当我们等比例扩大w和b的时候,函数间隔也会扩大相应的倍数。因此,我们引入几何间隔。

几何间隔就是在函数间隔的基础下,在分母上对w加上约束(这个约束有点像归一化),定义为γ:

其实参考点到直线的距离,我们可以发现几何间隔就是高维空间中点到超平面的距离,才能真正反映点到超平面的距离。

2.3 SVM目标函数及优化

根据SVM的思想,我们可以知道是要取最大化支持向量到超平面的几何间隔,所以目标函数可以表示为:

在感知机模型最后,我们知道当同时扩大w和b,分子分母都会同样扩大,对目标函数不影响,所以在这里我们将分子(支持向量到超平面的函数间隔)扩大或压缩等于1,则目标函数可以转化为:

但是上式并不是凸函数,不好求解,再进一步转化为:

上式就是一个凸函数,并且不等式约束为仿射函数,因此可以使用拉格朗日对偶去求解该问题。

根据拉格朗日乘子法,引入拉格朗日乘子α,且α≥0我们可以知道,先不考虑min,(2)问题等价于:

然后再考虑min,则有:

应用拉格朗日对偶性,通过求解对偶问题得到最优解,则对偶问题的目标函数为:

这就是线性可分条件下支持向量机的对偶算法。这样做的优点在于:

  • 一是原问题的对偶问题往往更容易求解
  • 二者可以自然的引入核函数,进而推广到非线性分类问题。

从(4)中,我们可以先求目标函数对于w和b的极小值,再求拉格朗日乘子α的极大值。

首先,分别对w和b分别求偏导数,并令为0:

将(5)和(6)代入(4)得到:

对(7)取反得到:

只要我们可以求出(8)中极小化的α向量,那么我们就可以对应的得到w和b,而求解α需要使用SMO算法,由于该算法比较复杂,我们将在下一篇文章专门讲解。假设我们现在已经使用SMO算法得到了最优的α值,记为α_ *

再求b:

对于任一样本(x_s, y_s)有:

注意到任一样本都有y_s^2=1,则将右式的1用y_s^2代:

将(9)代入上式,可以得到:

这样,我们就能够求解得到线性支持向量机的目标函数的各个参数,进而得到最优的超平面,将正负样本分隔开。但是在上文中我们没有讲解求α向量的SMO算法,在下篇文章,将会详细讲解SMO算法,欢迎继续关注。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-06-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 磐创AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档