JS动态加载以及JavaScript void(0)的爬虫解决方案

Intro


对于使用JS动态加载, 或者将下一页地址隐藏为JavaScript void(0)的网站, 如何爬取我们要的信息呢?

本文以Chrome浏览器为工具, 36Kr为示例网站, 使用 Json Handle 作为辅助信息解析工具, 演示如何抓取此类网站.

Detail


Step 1. 按下 F12 或右键检查进入开发者工具

Step 2. 选中Network一栏, 筛选XHR请求

XHRXMLHttpRequest, 可以异步或同步返回服务器响应的请求, 并且能够以文本或者一个 DOM 文档的形式返回内容.

JSON是一种与XML在格式上很像, 但是占用空间更小的数据交换格式, 全程是 JavaScript Object Notation, 本文中的36Kr动态加载时获取到的信息就是JSON类型的数据.

网站为了节省空间, 加快响应, 常常没有对 JSON 进行格式化, 导致 JSON 的可读性差, 难以寻找我们要的信息.

我们通过右键打开获取到的 XHR 请求, 然后看看数据是怎样的

未使用JSON Handle前
使用后

使用 Json Handle 后的数据可读性就很高了

Step 3. 分析 URL

结合上面的截图, 分析这条 URL

https://36kr.com/api/newsflash?column_ids=69&no_bid=false&b_id=126035&per_page=20&_=1530699384159

这中间有两个参数很容易可以知道它的用途, 第一个是per_page=20, 第二个是_=1530699384159

第一个参数是我们每次滚动后可以获取到的信息条数, 第二个是时间戳

试着改第一个参数改为10, 可以看到条数就变为10了.

修改per_page

改为1000呢? 很遗憾, 最大值只有300. 换算下来, 就是最多允许爬 15 页

滑动了超过15页发现仍然有信息显示, 经过转换, 发现它的时间戳只是浏览网页生成的时间戳, 与内容无关

按了几个数字, 修改了b_id的值, 发现内容确实发生了改变, 但**b_id**又是网站设定的规则, 无从入手

每次获取的最大值

改了no_bidtrue似乎没有变化, 接着修改了column_id为70, 发现新闻的内容发生改变, 合理猜测这个应该是新闻标签的id.

修改column_id

至此, 我们已大致了解整个 URL 的含义

per_page 每次滑动可以获得的数据条目, 最大值为300 column_ids 新闻内容标签, 69为资本, 68为B轮后等

b_id 新闻集合的某种id

时间戳 记录当前的浏览时间

最后把原本的 URL 缩减为

https://36kr.com/api/newsflash?column_ids=69&no_bid=true&b_id=&per_page=300

舍弃了b_id, 同时删去时间戳, 防止服务器发现每次接收到的请求时间都是一样的

经过测试, 上述的 URL 是可以获取信息的

Step 4. 开始爬虫

接下来的步骤与平时爬虫类似.

不同的是获取信息不再通过Xpath这些工具, 而是直接通过 JSON 取值

取值方式简单粗暴, 点击对应的内容就可以看路径了

JSON Handle查看路径

接着用scrapy shell工具测试下正确性, 然后就可以写代码了.

由于新闻来源隐藏在description, 经过观察, 不难发现它的规律, 写一条正则获取即可, 如果结果为空, 则说明来源是36Kr

src_pattern = re.compile('。((.*))')

Source Code


Spider

# -*- coding: utf-8 -*-
import scrapy
import json
import re
from scrapy import Request
from ..items import FinvestItem


class A36krSpider(scrapy.Spider):
    name = '36kr'
    allowed_domains = ['36kr.com']
    start_urls = ['https://36kr.com/api/newsflash?column_ids=69&no_bid=true&b_id=&per_page=300']

    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36',
    }

    def start_request(self):
        yield Request(self.start_urls, headers=self.headers)

    def parse(self, response):
        item = FinvestItem()
        # 转化为 unicode 编码的数据
        sites = json.loads(response.body_as_unicode())

        src_pattern = re.compile('。((.*))')

        for i in sites['data']['items']:
            item['link'] = i['news_url']
            item['title'] = i['title']
            if src_pattern.search(i['description']) == None:
                item['source'] = "36Kr"
            else:
                item['source'] = src_pattern.search(i['description']).group(1)
            item['create_time'] = i['published_at']
            item['content'] = i['description']
            
            yield item

Pipeline

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html

import pymongo
import re
from scrapy.conf import settings


class FinvestPipeline(object):

    def __init__(self):
        """
        use for connecting to mongodb
        """
        # connect to db
        self.client = pymongo.MongoClient(host=settings['MONGO_HOST'], port=settings['MONGO_PORT'])
        # ADD if NEED account and password
        # self.client.admin.authenticate(host=settings['MONGO_USER'], settings['MONGO_PSW'])
        self.db = self.client[settings['MONGO_DB']]
        self.coll = self.db[settings['MONGO_COLL']]

    def process_item(self, item, spider):
        content = item['content']
        title = item['title']

        fin = re.compile(r'(?:p|P)re-?(?:A|B)轮|(?:A|B|C|D|E)+?1?2?3?轮|(?:天使轮|种子|首)轮|IPO|轮|(?:p|Pre)IPO')
        
        result = fin.findall(title)
        if(len(result) == 0):
            result = "未透露"
        else:
            result = ''.join(result)

        content = content.replace(u'<p>', u' ').replace(u'</p>', u' ').replace(u'\n\t', ' ').strip()
        # delete html label in content
        rule = re.compile(r'<[^>]+>', re.S)
        content = rule.sub('', content)


        item['content'] = content
        item['funding_round'] = result
        self.coll.insert(dict(item))
        return item

GitHub项目地址 finvest-spider

正在建设和维护中, 欢迎 starissue.

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏桥路_大数据

Python3使用Scrapy快速构建第一款爬虫

3557
来自专栏Golang语言社区

package http

要管理代理、TLS配置、keep-alive、压缩和其他设置,创建一个Transport:

1944
来自专栏程序员的碎碎念

JS动态加载以及JavaScript void(0)的爬虫解决方案

对于使用JS动态加载, 或者将下一页地址隐藏为 JavaScriptvoid(0)的网站, 如何爬取我们要的信息呢?

1252
来自专栏lgp20151222

rabbit的简单搭建,java使用rabbitmq queue的简单例子和一些坑

由于本人的码云太多太乱了,于是决定一个一个的整合到一个springboot项目里面。

2871
来自专栏好好学java的技术栈

看了这篇文章,mybatis配置你肯定会了

MyBatis 的配置文件包含了影响 MyBatis 行为甚深的设置(settings)和属性(properties)信息。

903
来自专栏攻城狮的动态

iOS面试题梳理(三)

3637
来自专栏空帆船w

Android 专用的日志封装库

所以在程序开发或者上线后如果出现了 Bug,能够及时查看日志,对修复 Bug 非常有帮助。

852
来自专栏坚毅的PHP

jersey处理支付宝异步回调通知的问题:java.lang.IllegalArgumentException: Error parsing media type 'application/x-www

tcpflow以流为单位分析请求内容,非常适合服务器端接口类服务查问题 这次遇到的问题跟支付宝支付后的回调post结果有关 淘宝的代码例子: publi...

5385
来自专栏Python爬虫与算法进阶

Hi,这里是我的爬虫笔记

平时有个习惯,会把自己的笔记写在有道云里面,现在做个整理。会长期更新,因为我是BUG制造机。 解析 xpath提取所有节点文本 <div id="test3"...

3485
来自专栏coder修行路

go 源码学习之---Tail 源码分析

已经有两个月没有写博客了,也有好几个月没有看go相关的内容了,由于工作原因最近在做java以及大数据相关的内容,导致最近工作较忙,博客停止了更新,正好想捡起之前...

1322

扫码关注云+社区