数据库和AI的一次火花

| 导语 通过历史数据,基于时间序列来预测未来。

我们生活中很多数据是有时间维度的。比如说天气或者股票价格。对于这种带有时序的数据,有一种基于时间序列的预测模型---Prophet。

https://github.com/facebook/prophet

上面是项目的地址,需要的小伙伴可以去上面一看究竟。而我主要做的是通过该模型来预测腾讯云数据库存储量变化的未来趋势。下来就来看看Prophet的强大之处吧。

前面说到Prophet是基于时间序列的模型,所以说时间是里面最重要的一个维度(如果您需要预测自己的数据,那么必须是pandas固定的时间格式)。现在就开始直接看下结果吧。

纵轴是腾讯云某类型数据库的购买总量,可以看到随着时间的增长,数据库的购买总量还是在不断增长的。而Prophet所要做的就是根据数据的历史表现来估计数据未来的走势。实验中我选取了2018年1月到6月的数据作为测试集。黑点为真实值,蓝色区域为模型预测的估计值,可以看到随着时间的推移,总体估计容量的趋势是增长的,但是随着时间的推移,不确定性区域越来越大(图中蓝色区域),也可以认为是随着时间的推移,不确定性越来越大。下面来看看真实值与模型预测值是否准确:

图中6月份以后的数值是对模型的测试集,红色区域就是模型未见过的数值与估计值的相对情况。可以明显的看到,该模型估计还是相当准确的呀。可能有很多小伙伴要问了,为啥4月末会出现一个阶段式的跳跃呢?就是我们腾讯云的某月销百亿的电商大客户最近有比较大的手笔。

当然该模型不仅仅可以估计进几个月,也可以估计更长的时间,但是随着时间的推移,可能就更不准确了。

重点就是来了!!!

这东西就是预测一个容量那么简单么?

当然不是了。。主要分两大方面:

1.可以为我们自己提供服务:

(1).可以为我们提供潜在客户的估计。(比如明显可以看到某个公司近几个月飞速购买数据库服务,但是该公司不是我们的大客户。所以很难通过简单的容量排行榜找到他。但是Prophet可以估计出谁可能在后面变成大客户,这样就可以告诉架构师谁是我们的潜在客户。)

(2).还可以通过对我们数据库的总量或者单个客户的数据库总量进行估计,告诉大概什么时候客户需要扩容了,让我们对自己的服务有更好的准备。

2.我们也可以为我们的客户服务:

(1).客户可以通过对自习所选的维度进行分析,相当于一个saas服务。

(2).客户还可以对自己所买的CVM相关的用量进行分析,以便选择最合理的配置。

最后简单说下模型内部结构。

Prophet是一个累加回归模型(additiveregressionmodel)模型的整体构建如下:

y(t) = g(t)+s(t)+h(t)+et

主要有三部分组成:growth(增长趋势)、seasonality(季节趋势)以及holidays(节假日对预测值的影响)。其中g(t)表示增长函数,用来拟合时间序列中预测值的非周期变化。用分段线性或逻辑增长曲线拟合的趋势成分。Prophet会从数据中找出转折点,自动检测趋势变化s(t)用来表示周期性变化,比如每周、每年中的季节等。用傅里叶级数建模的季节成分,以年为单位。用虚拟变量表示的季节成分,以周为单位h(t)表示时间序列中那些潜在的具有非固定周期的节假日对预测值造成的影响。et为噪声项。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

深度 | 深鉴科技CEO姚颂详解深度学习处理架构的演进历程

AI 科技评论按:AI研习社系列公开课持续进行中,高水平的嘉宾、精彩的分享主题、宽广的学术视角和敏锐的行业理解,肯定会让每个观众/读者都有所收获。 深度学习、体...

3687
来自专栏人工智能头条

算法、应用与计算平台,讯飞百度阿里360的深度学习经

1834
来自专栏AI科技评论

开发 | Kaldi集成TensorFlow,两个开源社区终于要一起玩耍了

AI科技评论按:自动语音识别(Automatic speech recognition,ASR)领域被广泛使用的开源语音识别工具包 Kaldi 现在也集成了Te...

4356
来自专栏数据科学与人工智能

【风控】催收评分和不良贷款市场的机会

本研究的目标是在一家专门从事不良贷款组合的巴西公司254,914名客户的样本中开发一个催收评分模型,使用Logistic回归来识别那些更倾向于偿还不良贷款的客户...

1265
来自专栏AI研习社

评测 | 谷歌 TPU 二代来了,英伟达 Tesla V100 尚能战否?

AI 研习社按:谷歌去年年中推出的 TPUv1 一度让英伟达感受到威胁将近,而现在的谷歌 TPU 二代 TPUv2 则着着实实得将这份威胁变成了现实,去年的评测...

1031
来自专栏量子位

IBM实现了创纪录的深度学习性能:完败Facebook微软

陈桦 编译整理 量子位 出品 | 公众号 QbitAI 昨晚,外媒都在用夸张的标题报道IBM的人工智能又立功了,例如说IBM的速度快得很“抓马”云云。到底怎么回...

2813
来自专栏机器之心

前沿 | 18000块GPU的深度学习机器:橡树岭实验室即将推出Summit超级计算机

选自Nextplatform 作者:Nicole Hemsoth 机器之心编译 参与:黄小天、李泽南 美国橡树岭国家实验室的「Titan」超级计算机是「美洲虎」...

3338
来自专栏ATYUN订阅号

IBM开发全新的深度学习芯片,旨在极大提高利用率

深度学习领域仍在不断变化,但有些事情已经开始着手解决。特别是专家们认识到,如果芯片使用低精度数学近似得出答案,神经网络可以用很少的能量完成大量的计算。这在移动和...

673
来自专栏新智元

Hassabis 论文:为智能体设计“不需要模型的情景控制系统”

【新智元导读】谷歌 DeepMind 创始人 Demis Hassabis 等人近日发表论文,延续其拓展的辅助学习系统理论,为智能体设计了一个“不需要模型的情景...

3007
来自专栏ATYUN订阅号

【业界】是时候解决深度学习的生产力问题了

深度学习正在推动从消费者的手机应用到图像识别等各个领域的突破。然而,运行基于深度学习的人工智能模型带来了许多挑战。最困难的障碍之一是训练模型所需的时间。 ? 需...

3296

扫码关注云+社区