30000$奖金+顶会分享 Google AI推出新的目标检测挑战赛

来源 | Towards Data Science

整理 | 磐石

【磐创AI导读】计算机视觉领域的又一大比赛盛宴,Google AI在kaggle竞赛平台上推出Open Images Challenges大规模目标检测竞赛。目标检测+视觉关系识别。奖金丰厚,同时还会将比赛结果分享在几月后的ECCV2018会议上。比赛直达链接见文末。欢迎大家关注我们的公众号:磐创AI

就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛。当今计算机视觉社区已经很长一段时间没有进行如此新的大规模竞赛,这对视觉研究者来说绝对是一个令人振奋的消息。

连续多年ImageNet一直是计算机视觉领域的“黄金标准型”竞赛,并且吸引了大量团队每年都参与竞争,以获得在ImageNet数据集上最低的错误率。同时,深度学习技术的突破更是使得图像识别任务取得了令人瞩目的巨大进步,甚至超过了人类的准确度。

ImageNet是一个大规模的视觉识别竞赛,有着1000个不同的类别和120万张训练图像。如此大规模的数据使ImageNet变得非常具有挑战性。通过这个比赛,除了学习到如何很好地分类图像之外,还得到了很重要的一点就是我们得到了可以用于其他视觉任务的特征提取器。在ImageNet上预训练的特征提取网络被运用到了许多其他计算机视觉任务,包括目标检测分割跟踪等等。此外,这些特征提取网络的设计同样也可以适用在那些其他的视觉任务上。例如,shortcut connections(跳连)最初就是来自2015年获奖的ImageNet挑战团队所设计的网络,并且现在已经被用于解决计算机视觉任务的大量卷积神经网络结构中。这是一件很有意义的事,大家在一个挑战赛中设计的网络可以被应用到更复杂的任务上。

ImageNet上的错误率历史记录(显示每年团队最佳结果,每年最多10个条目)

Google AI在Kaggle上推出的新一轮目标检测竞赛是正朝着这个积极方向迈进。到目前为止,COCO检测挑战一直是目标检测的重要挑战之一。但是,与ImageNet相比,它规模较小。COCO只有80个类别330K图像。它并不能达到人们在现实世界中那么复杂的场景想要实现的目标。从业者往往也会发现在自然环境下目标检测会变得极具挑战性。相比而言,ImageNet至少有着足够大的数据集和足够多的类,它对于预训练和使用网络进行迁移学习都非常有用。也许在足够大的数据集上,训练得到的目标检测器在迁移学习时会同样有着足够好表现。

Google AI已公开发布了Open Images数据集v4版本。kaggle上由Google AI发起的比赛的数据集就是基于这个数据集,但又不是完全相同的。另外,Open Images同样遵循着PASCAL VOC,ImageNet和COCO的传统,而且规模空前

Open Images Challenge基于Open Images数据集。竞赛训练集包括:

  • 1.7Million训练图像,500个类别,12Million边界框标注
  • 具有多个目标的复杂场景图像 - 每个图像平均7个标注框
  • 高度多样化的图像,包含像“男士软呢帽(fedora)”和“雪人(snowman)”这样的全新目标
  • 包含描述Open Images类别之间关系的类别层次结构(class hierarchy)信息

除了目标检测赛道(Google AI Open Images - Object Detection Track)之外,比赛还包括视觉关系检测赛道(Google AI Open Images - Visual Relationship Track),用于检测特定关系中的物体对。例如“女人弹吉他”,“桌上的啤酒”,“车内的狗”,“男人拿着咖啡”等等。大家可以在此处(https://storage.googleapis.com/openimages/web/factsfigures.html)找到有关数据集的更多信息。这是一个很棒的数据集,在上边的链接中你会发现它的丰富性。在这里(https://storage.googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy_visualizer/circle.html)大家可以看到数据集全部600个类别的层次结构关系。大家可以观察到这是一个不均匀且非常广泛的类别分布。这意味着大家不能天真地统一对待所有类别做处理,大家需要考虑到类别的分布。这一点也更加贴近人们现实世界中的场景。这个数据集的以上特性无疑使我们更接近于创建对于自然场景更鲁棒的模型。

这个挑战赛的奖品也非常诱人,不但有着目标检测赛道30,000美元与视觉关系识别20000美元的奖金池,此外挑战赛的结果还会在2018年欧洲计算机视觉会议(ECCV2018)的研讨会上公布。ECCV2018将在德国慕尼黑举行。

这个比赛是在Kaggle上举办的,很赞。挑战的核心(kernel)往往最终成为从竞争对手看到不同方法的知识来源。如此大规模且复杂的挑战很有希望带来可以应用于计算机视觉领域的最佳研究与一些新想法,就像ImageNet一样。

最后,希望大家在这场激烈的比赛中学到了一些新的和有用的东西,并对计算机视觉和AI的未来感到兴奋。

比赛直达链接:

[1] 目标检测(Google AI Open Images - Object Detection Track):https://www.kaggle.com/c/google-ai-open-images-object-detection-track

[2] 视觉关系识别(Google AI Open Images - Visual Relationship Track):https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track

原文发布于微信公众号 - 磐创AI(xunixs)

原文发表时间:2018-07-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【陆勤阅读】数据分析的主要困难与算法的重要性

数据分析的主要困难 我们碰到的数据通常有这样几个特点。一是数据量大。大家只要想一想,万维网上有多少网页,这些网页上有多少数据,就可以对现在碰到的数据量之大有点...

1895
来自专栏AI科技评论

视频 | 10分钟带你认识强化学习

AI 科技评论按:喜欢机器学习和人工智能,却发现埋头苦练枯燥乏味还杀时间?油管频道 Arxiv Insights 每周精选,从技术视角出发,带你轻松深度学习。

1315
来自专栏机器之心

学界 | MIT 提出Network Dissection框架,全自动窥探神经网络训练的黑箱

选自MIT News 作者:Larry Hardesty 机器之心编译 参与:李亚洲、黄小天 MIT的新技术帮助阐释了在可视化数据上训练的神经网络的内部机制。 ...

35211
来自专栏钱塘大数据

IBM长文解读人工智能、机器学习和认知计算

人工智能的发展曾经经历过几次起起伏伏,近来在深度学习技术的推动下又迎来了一波新的前所未有的高潮。近日,IBM 官网发表了一篇概述文章,对人工智能技术的发展过程进...

36613
来自专栏QQ空间开发团队的专栏

有关照片聚类算法的思考

本文作者主要从聚类的规则、聚类效果、聚类的算法八个方面探讨有关照片聚类算法的思考。

5860
来自专栏AI研习社

零基础搞懂强化学习?这份视频攻略不算迟

本期 Arxiv Insights 将重点介绍机器学习中的子领域“强化学习”,也是机器人最具智能前景的方向之一。

1163
来自专栏瓜大三哥

图像融合

像素级图像融合:主要是针对初始图像数据进行的,其主要目的是主要是图像增强、图像分割和图像分类,从而为人工判读图像或更进一步的特征级融合提供更佳的输入信息。像素级...

23310
来自专栏量子位

深度神经进化大有可为?Uber详解如何用它优化强化学习 | 5篇论文

作者 Kenneth O. Stanley & Jeff Clune 夏乙 编译自 Uber Engineering Blog 量子位 出品 | 公众号 Qbi...

3084
来自专栏数据派THU

悉尼大学陶大程:遗传对抗生成网络有效解决GAN两大痛点

悉尼大学教授、澳大利亚科学院院士、优必选人工智能首席科学家陶大程博士在9月20日的AI WORLD 2018世界人工智能峰会上发表《AI破晓:机遇与挑战》的主题...

1675
来自专栏AI研习社

CVPR 2018摘要:第三部分

CVPR 2018(计算机视觉和模式识别)会议已经结束,但我们不能停止回顾其精彩的论文; 今天,我们学习第三部分。在第一部分中,我们简要回顾了2018年CVPR...

903

扫码关注云+社区

领取腾讯云代金券