专栏首页CreateAMindWhy Neurons Have Thousands of Synapses

Why Neurons Have Thousands of Synapses

Why Neurons Have Thousands of Synapses, A Theory of Sequence Memory in Neocortex

人脑中每个细胞的突触数量平均在7000多个,关于为什么每个神经细胞有这么多突触,这个论文给出了一个理论解释及模型。

论文的abstract:

Neocortical neurons have thousands of excitatory synapses. It is a mystery how neurons integrate the input from so many synapses and what kind of large-scale network behavior this enables. It has been previously proposed that non-linear properties of dendrites enable neurons to recognize multiple patterns. In this paper we extend this idea by showing that a neuron with several thousand synapses arranged along active dendrites can learn to accurately and robustly recognize hundreds of unique patterns of cellular activity, even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where some of the patterns recognized by a neuron lead to action potentials and define the classic receptive field of the neuron, whereas the majority of the patterns recognized by a neuron act as predictions by slightly depolarizing the neuron without immediately generating an action potential. We then present a network model based on neurons with these properties and show that the network learns a robust model of time-based sequences. Given the similarity of excitatory neurons throughout the neocortex and the importance of sequence memory in inference and behavior, we propose that this form of sequence memory is a universal property of neocortical tissue. We further propose that cellular layers in the neocortex implement variations of the same sequence memory algorithm to achieve different aspects of inference and behavior. The neuron and network models we introduce are robust over a wide range of parameters as long as the network uses a sparse distributed code of cellular activations. The sequence capacity of the network scales linearly with the number of synapses on each neuron. Thus neurons need thousands of synapses to learn the many temporal patterns in sensory stimuli and motor sequences.

本文分享自微信公众号 - CreateAMind(createamind)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2015-12-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Auto-Encoding GAN

    Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed

    用户1908973
  • Predicting the Future V2更新

    Predicting the Future with Multi-scale Successor Representations

    用户1908973
  • STCN

    https://www.arxiv-vanity.com/papers/1902.06568/

    用户1908973
  • SCI闪电速递-快速发表论文杂志整理

    每到年底,都是大家最愁文章的时候。对于毕业了,已经参加工作的,过了年就要交国自然基金的标书,而自己的标书还没有扎实的工作基础;对于没毕业的,过年就意味着交毕业论...

    用户6317549
  • 高级知识评估:基于结果分析,重新设计基于药学专业的网络考试(CS CAS)

    各地信息技术的使用导致对新的教育方式有需求。现代化的电子学习环境将学生的学习知识和技能的教学,学习和评估带入了一个新时代,且考虑到学生的电子学习动机。高等数学课...

    时代在召唤
  • 忆阻神经元爆发性动态行为的产生与应用(CS ET)

    由两个忆阻器构建的忆阻器神经元可用于模拟生物神经元的许多动力学行为。 首先,全面研究了忆阻器神经元的动态工作条件及其在突增和爆发之间的转换边界。 然后,分析了突...

    非过度曝光
  • 世界贸易网络中的通信能力——社区检测的新视角(Social and Information Networks)

    网络中的社区检测在经济和金融环境中起着至关重要的作用,特别是在应用于世界贸易网络时。我们提供了一个新的视角,在这个视角中,通过一个特定的距离标准来识别相互作用强...

    李欣颖6837176
  • 积极的算法偏见无法阻止同性社交网络的分裂(Social and Information Networks)

    社会网络中的碎片化、回音室及其改进已经成为学术界和非学术界日益关注的问题。本文证明了在同质性假设下,即使在理想的异质性条件下,回音室和碎片化也是高度灵活的社会网...

    用户6869393
  • 土耳其命名实体识别中最新神经序列标签模型的评估(CS CL)

    命名实体识别(NER)是一项经过广泛研究的任务,用于提取文本中的命名实体并对其进行分类。NER不仅在下游语言处理应用程序(例如关系提取和问题解答)中至关重要,而...

    刘子蔚
  • 便携式呼吸道健康检查装置(CS CAS)

    世卫组织于2020年1月30日将COVID-19流行病列为国际关注的突发公共卫生事件。为了遏制该流行病的二次传播,许多公共场所都配备了热成像仪以检查人体温度。但...

    时代在召唤

扫码关注云+社区

领取腾讯云代金券