专栏首页CreateAMindAdversarial Variational Bayes: Unifying VAE and GAN 代码

Adversarial Variational Bayes: Unifying VAE and GAN 代码

Adversarial Variational Bayes

This repository contains the code to reproduce the core results from the paper Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks.

To cite this work, please use

@INPROCEEDINGS{Mescheder2017ICML,
  author = {Lars Mescheder and Sebastian Nowozin and Andreas Geiger},
  title = {Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks},
  booktitle = {International Conference on Machine Learning (ICML)},
  year = {2017}
}

Dependencies

This project uses Python 3.5.2. Before running the code, you have to install

  • Tensorflow 1.0
  • Numpy
  • Scipy
  • Matplotlib
  • tqdm
  • ite-toolbox

The former 5 dependencies can be installed using pip by running

pip install tensorflow-gpu numpy scipy matplotlib tqdm

Usage

Scripts to start the experiments can be found in the experiments folder. If you have questions, please open an issue or write an email to lmescheder@tuebingen.mpg.de.

MNIST

To run the experiments for mnist, you first need to create tfrecords files for MNIST:

cd tools
python download_mnist.py

Example scripts to run the scripts can be found in the experiments folder.

Samples:

CelebA

To run the experiments on celebA, first download the dataset from here and put all the images in the datasets/celebA folder.

Samples:

Interpolations:

https://github.com/LMescheder/AdversarialVariationalBayes

本文分享自微信公众号 - CreateAMind(createamind)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-10-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 解决RL好奇心探索后遗忘的问题

    Amplifying the Imitation Effect for Reinforcement Learning of

    用户1908973
  • 代码:Learning by Playing –Solving Sparse Reward Tasks from Scratch

    用户1908973
  • 图片语义级属性轻松改变

    论文: Deep Feature Interpolation for Image Content Changes

    用户1908973
  • Common Pitfalls to Avoid when using HTML5 Application Cache

    Application Cache, also known as AppCache, has been a pretty hot topic with web ...

    IMWeb前端团队
  • Common Pitfalls to Avoid when using HTML5 Application Cache

    Application Cache, also known as AppCache, has been a pretty hot topic with web ...

    IMWeb前端团队
  • Common Pitfalls to Avoid when using HTML5 Application Cache

    Application Cache, also known as AppCache, has been a pretty hot topic with web ...

    IMWeb前端团队
  • 基于最大主曲率算法和欧氏距离的指静脉识别 -----附带源码和解析文档

      暑假了就有时间写写博客了,大一的师弟们也要进入算法的领域了,于是我就写了一个简略版基于最大主曲率算法的指静脉识别给他们入门用,

    徐飞机
  • POJ-2336 Ferry Loading II(简单DP)

    Ferry Loading II Time Limit: 1000MS Memory Limit: 65536K Total Submissi...

    ShenduCC
  • Common Pitfalls to Avoid when using HTML5 Application Cache

    本文作者:IMWeb 黎腾 原文出处:IMWeb社区 未经同意,禁止转载 Application Cache, also known as AppCa...

    IMWeb前端团队
  • POJ-2029 Get Many Persimmon Trees(动态规划)

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total ...

    ShenduCC

扫码关注云+社区

领取腾讯云代金券