人工智能与大数据的完美结合

人工智能(AI)已经存在几十年了。然而,最近随着“大数据”的出现,它得到了越来越多的关注。维基百科对人工智能的释义如下:

在计算机科学中,人工智能研究的领域将自己定义为“智能代理AI和大数据:完美结合”的研究:任何设备都能感知到它的环境,并采取一些行为最大化其在一些目标上获得成功的机会。

而将大数据描述如下:

“大数据是如此的庞大或者复杂,以至于传统的数据处理应用软件不足以处理它们。”

计算机已经变得如此强大,以至于我们现在有能力在每秒存储数百万条的数据记录。不幸的是,分析数据的能力可能是一个瓶颈,继续使用传统的方法并不可取。

人工智能和大数据:完美结合

summer

那么,大数据为什么会引起对人工智能的关注呢?答案很简单,人工智能可以用传统人类无法处理的方式来处理大数据集。

以银行应用程序为例。该应用程序每秒钟的数据流以百万级来记录,我们希望它在异常活动发生时发出警报,例如欺诈或者盗窃等行为。遇到这种情况,人们也许不太可能完整地去处理和分析这一数据量,而是选择一个小片段,一秒一秒的处理。即使有数以百计的人在分析欺诈可能性的情况下,如此大量的数据也会降低决策能力。

那么对于传统的数据处理系统呢?问题是,它们仅仅是算法,必然会束缚那些相同的逻辑。当寻找异常的时候,灵活性是必需的,但传统的方法并不擅长。

现在我们进入人工智能。这些系统运行起来具有模糊性。他们预测,会考虑一条路径,但是如果新数据否定了一个推理思路,那么就可以放弃它了,然后开始寻找一个新的方向。由于在给人工智能系统提供更多数据时它会变得更聪明,因此这非常适合于识别随时间变化的异常。

现在让我们来看看一些大数据应用的人工智能技术。

应用于大数据的人工智能技术

summer

  • 外推

外推是在原始观测范围之外,根据变量与其它变量的关系来评估变量的值的过程。我们假设一些数据呈现出一种趋势,公司高管想知道:如果这种趋势持续下去,三个月后公司将会发展到什么情况?外推法可以做到。请记住,并非所有的趋势都是线性的。线性趋势很简单;一个简单的直线图就足够了。非线性的趋势需要更多地参与,这就是外推函数有用处的地方。这些算法是基于多项式、圆锥曲线或曲线方程的。

  • 异常检测

异常检测也被称为异常值检测。它包括标识不符合预期模式的识别数据项、事件或观测,或数据集中的其它项。异常检测可以识别诸如银行欺诈(先前提到的AI的应用)之类的事件。它也适用于几个其它领域,包括(但不限于):故障检测、系统健康监测、传感器网络和生态系统干扰。

  • 贝叶斯原理

在概率论和数理统计学之中,贝叶斯原理描述了一个事件的概率,它是基于与事件相关的条件前验知识。这是基于先前事件来预测未来的一种方式。假设一个公司希望知道哪些客户有流失的风险。使用贝叶斯方法,可以收集满意度不足的客户的历史数据,并用于预测以后有可能流失的客户。这是一个非常适合应用大数据的例子,因为更多的历史数据被馈送到贝叶斯算法里,其预测结果变得更准确。

自动化计算密集型人类行为

summer

在某些情况下,人类有可能分析大量的数据,但随着时间的推移,这很繁琐,就需要人工智能来帮忙。基于规则的系统可以用来从人类这里提取、存储和操纵知识,以便以有用的方式来解释数据。在实践中,规则是从人类经验中产生出来的,并表示为一组“如果-那么”的语句,它们使用一组断言,在这些断言上面创建如何对其采取行动的规则。基于规则的系统可以用来创建软件来代替人类专家提供问题的答案。这些系统也可以称为专家系统。考虑一个公司,它有一个能为特定目标分析数据的人类专家,但是,这项任务比较单调乏味。基于规则的系统可以捕获和自动操作这种专门技能。

  • 图形原理

在数学中,图形原理是用来模拟对象之间成对关系的数学结构的研究。在此上下文中的图形由顶点、节点或由边、圆弧和线段连接的点组成,并且可以相当复杂和庞大。利用图形原理,可以很容易地了解数据之间的关系。例如,考虑一个复杂的计算机网络。图形原理可以提供一些见解,以了解网络中的瓶颈如何导致其它问题以及某一特殊瓶颈的根本原因。

  • 模式识别

顾名思义,模式识别用于检测数据中的模式和规律,它是机器学习的一种形式。模式识别系统利用数据训练的过程被称为监督学习。它们还可以被用来发现以前未知的数据模式,这个过程称为无监督学习。与基于单个数据类型的潜在异常的异常检测方法不同,模式识别可以发现以前在多个数据片中未知的模式,并考虑数据之间的模式(或关系)。一个公司(包括任何行业)可能都有兴趣知道什么时候发生了不寻常的事情,比如如果消费者突然开始购买一种与另一种一起购买的商品。这种模式可能是一个企业所感兴趣的。

总之,人工智能是一种在大数据世界中指引方向和收集规律的方法。

【End】

原文发布于微信公众号 - 奇点(qddata)

原文发表时间:2018-06-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

AI技术讲座精选:数学不好,也可以学习人工智能

【AI100导读】越来越多工程师想学习大热的深度学习,但深度学习技术需要数学功底,数学不好怎么办?这篇文章可以提供成为深度学习工程师的数学路径。 如果你像我一样...

3316
来自专栏AI派

我是如何入门机器学习的呢

机器学习在很多眼里就是香饽饽,因为机器学习相关的岗位在当前市场待遇不错,但同时机器学习在很多人面前又是一座大山,因为发现它太难学了。在这里我分享下我个人入门机器...

1745
来自专栏AI科技大本营的专栏

文因互联鲍捷:深度解析知识图谱发展关键阶段及技术脉络 | 公开课笔记

知识图谱是人工智能三大分支之一——符号主义——在新时期主要的落地技术方式。该技术虽然在 2012 年才得名,但它的历史渊源,却可以追溯到更早的语义网、描述逻辑、...

1495
来自专栏计算机视觉战队

简单车牌检测

现在社会的发展迅速,人工智能也是现今最火热的趋势之一。很多智能化理念都会一一去实现,只是时间和策划的问题。 今天什么最多,其实有一个绝对是车。所以未来的智能交...

3436
来自专栏Crossin的编程教室

Python 向人工智能方向发展的技能树

有不少同学学习 Python 的原因是对人工智能感兴趣,有志于从事相关行业。今天我们来聊聊这个方向所需要的一些技能。

1972
来自专栏牛客网

【数据挖掘面经】腾讯+百度+华为(均拿到sp offer)

1.4K4
来自专栏哲学驱动设计

结构化思维-思维的结构

    我原来在"这篇总结"中总结过一种的思维方式:TT(Tree-Thinking)。(嘿嘿,程序员嘛,喜欢用本行的术语(Tree)来解释一些现象。)一直以来...

2248
来自专栏大数据文摘

谷歌上线自带中文的机器学习免费课程,我们带你做了个测评

1715
来自专栏人工智能LeadAI

如何准备机器学习工程师面试

人们用很多东西来比喻准备面试的过程。有人说这像准备一场战争,也有人说像邀请某人出去约会,还有人说像在高尔夫大师赛上打进最后一个洞。准备面试是一个令人兴奋,又或者...

3656
来自专栏新智元

谷歌新目标——让计算机实现自我编程,自主机器时代不再遥远

【新智元导读】 许多人对AI的想象都停留在应用层,而忽视了技术层AI也将产生颠覆——让机器自己编程。谷歌大脑、DeepMind、Facebook甚至Viv 都在...

3496

扫码关注云+社区

领取腾讯云代金券