专栏首页CreateAMindNonparametric VAE for Hierarchical Representation Learning

Nonparametric VAE for Hierarchical Representation Learning

Abstract

The recently developed variational autoencoders (VAEs) have proved to be an effective confluence of the rich repre- sentational power of neural networks with Bayesian meth- ods. However, most work on VAEs use a rather simple prior over the latent variables such as standard normal distribu- tion, thereby restricting its applications to relatively sim- ple phenomena. In this work, we propose hierarchical non- parametric variational autoencoders, which combines tree- structured Bayesian nonparametric priors with VAEs, to en- able infinite flexibility of the latent representation space. Both the neural parameters and Bayesian priors are learned jointly using tailored variational inference. The resulting model induces a hierarchical structure of latent semantic concepts underlying the data corpus, and infers accurate representations of data instances. We apply our model in video representation learning. Our method is able to dis- cover highly interpretable activity hierarchies, and obtain improved clustering accuracy and generalization capacity based on the learned rich representations.

https://arxiv.org/abs/1703.07027

本文分享自微信公众号 - CreateAMind(createamind)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-04-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 开源ALNS 自适应大邻域搜索(Adaptive Large Neighborhood Search)

    This package offers a general, well-documented and tested implementation of the ...

    用户1908973
  • State Abstraction as 压缩 in Apprenticeship Learning

    State Abstraction as Compression in Apprenticeship Learning https://github.com/d...

    用户1908973
  • 论文解读:主视觉大脑皮层的深度层级模型:机器视觉可以从中学到些什么?

    、论文:Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Compute...

    用户1908973
  • The Event Marketing Guide: Methods, Concepts, Definitions

    Human interaction is the base for built up socio-economic, political, psychologi...

    用户7608382
  • 将Facebook用户的人口统计数据与人口普查数据进行比较,以生成修正因子(cs.SI)

    世界各地的人口普查和代表性抽样调查是指导政府投资和公共政策的关键数据来源。然而,这些来源的获取非常昂贵,而且收集相对不频繁。在过去的十年里,越来越多的人对利用社...

    用户6869393
  • GPS Tracking Devices for Security Purposes

    Today, the utilization of GPS has become a piece of our regular day to day exist...

    用户7437050
  • 2017美国数学建模MCM A题(连续型)翻译 管理赞比西河

    The Kariba Dam on the Zambezi River is one of the larger dams in Africa. Its con...

    AI那点小事
  • 将机器学习应用于金融技术领域的15家公司(英)

    用户1737318
  • 原创译文 | 为什么AI不能解决Facebook的虚假新闻问题

    转载声明 本文为灯塔大数据原创内容,欢迎个人转载至朋友圈,其他机构转载请在文章开头标注:“转自:灯塔大数据;微信:DTbigdata” 导读:上一期了解了关于将...

    灯塔大数据
  • 网络出版商RTB收入的实时优化(CS.GT)

    本文描述了一个引擎优化网站出版商收入从二次拍卖。这种拍卖方式被广泛用于销售在线广告空间,其机制称为实时竞价(RTB)。在这些拍卖中优化是至关重要的,因为设置适当...

    用户7236395

扫码关注云+社区

领取腾讯云代金券