GAN论文解读推荐

本文转自公众号:程序媛的日常

ICLR 2017 的 submission DDL 刚刚过,网上就纷纷有了 ICLR 2017 导读的文章。本周我也将为大家带来 ICLR 2017 submission 的分类导读,而且是更详细地介绍!今天开篇就来介绍我一直很关注也一直在做的 GAN 方面的部分论文(不是全部,分批介绍吧)。

今天会介绍的论文有(全部来自 ICLR 2017 submissions):

1. 《Mode Regularized Generative Adversarial Networks》. Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li

2. 《Generative Adversarial Parallelization》. Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor

3. 《Unrolled Generative Adversarial Networks》. Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein.

4. 《Improving Generative Adversarial Networks with Denoising Feature Matching》. David Warde-Farley, Yoshua Bengio

5. 《Energy-based Generative Adversarial Networks》. Junbo Zhao, Michael Mathieu, Yann LeCun

................为此,这篇论文[1] 提出一种 mode-regularized 的思想,来增加对 GAN 训练过程的控制。具体来说,与其上 GAN 中的生成网络 G 直接从 noise vector z 映射到样本空间,我们可以让 z 从一个样本空间先映射过来,也就是有一个 z = encoder(X) 的过程,从而再,G(encoder(X))。这样的好处是,reconstruction 过程会增加额外的学习信息,使得生成网络生成出来的 fake data(generated sample)不再那样容易被判别网络 D 一下子识别出来。这样 D 和 G 就都能一直有 loss/gradient 去将训练过程较为稳定地进行下去,从而达到了让 GAN 训练更加稳定的效果。另一方面,因为 encoder(X) 保证了 X 和映射后的 X 的空间的对应性,也就可以保证了生成网络能覆盖所有样本空间的样本 modes,也就理论上保证了 missing modes 问题的减少。所以,这篇论文[1] 给出的是一种 rugularizer for GAN,而用这样的 regularizer 的 GAN 就被作者叫做 Regularized-GAN(在实验中)。............

原文发布于微信公众号 - CreateAMind(createamind)

原文发表时间:2016-11-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【干货】Python大数据处理库PySpark实战——使用PySpark处理文本多分类问题

【导读】近日,多伦多数据科学家Susan Li发表一篇博文,讲解利用PySpark处理文本多分类问题的详情。我们知道,Apache Spark在处理实时数据方面...

11.3K9
来自专栏专知

【论文推荐】最新四篇CVPR2018 视频描述生成相关论文—双向注意力、Transformer、重构网络、层次强化学习

【导读】专知内容组在昨天推出八篇视频描述生成(Video Captioning)相关文章,今天为大家推出CVPR2018最新视频描述生成相关论文,欢迎查看!

3182
来自专栏AI研习社

126篇殿堂级深度学习论文分类整理 从入门到应用(上)

█ 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步。而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?”...

3598
来自专栏专知

【论文推荐】最新八篇推荐系统相关论文—可解释推荐、上下文感知推荐系统、异构知识库嵌入、深度强化学习、移动推荐系统

【导读】专知内容组既昨天推出八篇推荐系统相关论文之后,今天为大家又推出八篇推荐系统(Recommendation System)相关论文,欢迎查看!

5103
来自专栏专知

【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得...

1.5K14
来自专栏专知

【论文推荐】最新5篇视频分类相关论文—上下文门限、深度学习、时态特征、结构化标签推理、自动机器学习调优

【导读】专知内容组整理了最近五篇视频分类(Video Classification)相关文章,为大家进行介绍,欢迎查看! 1.Learnable pooling...

4765
来自专栏专知

【专知荟萃23】深度强化学习RL知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

【AlphaGoZero核心技术】深度强化学习专知荟萃 【AlphaGoZero核心技术】深度强化学习专知荟萃 基础入门 进阶文章 Papers Papers ...

6909
来自专栏专知

【论文推荐】最新八篇视频描述生成相关论文—在线视频理解、联合定位和描述事件、生成视频、跨模态注意力机制、联合事件检测和描述

【导读】专知内容组整理近期八篇视频描述生成(Video Captioning)相关文章,为大家进行介绍,欢迎查看!

2005
来自专栏量子位

18种热门GAN的PyTorch开源代码 | 附论文地址

有GitHub小伙伴提供了前人的肩膀供你站上去。TA汇总了18种热门GAN的PyTorch实现,还列出了每一种GAN的论文地址,可谓良心资源。

2162
来自专栏专知

【论文推荐】最新5篇行人再识别(ReID)相关论文—迁移学习、特征集成、重排序、 多通道金字塔、深层生成模型

【导读】专知内容组整理了最近五篇行人再识别(Person Re-identification)相关文章,为大家进行介绍,欢迎查看! 1.Unsupervised...

5067

扫码关注云+社区

领取腾讯云代金券