前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GAN论文解读推荐

GAN论文解读推荐

作者头像
用户1908973
发布2018-07-25 11:08:42
5360
发布2018-07-25 11:08:42
举报
文章被收录于专栏:CreateAMindCreateAMind

本文转自公众号:程序媛的日常

ICLR 2017 的 submission DDL 刚刚过,网上就纷纷有了 ICLR 2017 导读的文章。本周我也将为大家带来 ICLR 2017 submission 的分类导读,而且是更详细地介绍!今天开篇就来介绍我一直很关注也一直在做的 GAN 方面的部分论文(不是全部,分批介绍吧)。

今天会介绍的论文有(全部来自 ICLR 2017 submissions):

1. 《Mode Regularized Generative Adversarial Networks》. Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li

2. 《Generative Adversarial Parallelization》. Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor

3. 《Unrolled Generative Adversarial Networks》. Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein.

4. 《Improving Generative Adversarial Networks with Denoising Feature Matching》. David Warde-Farley, Yoshua Bengio

5. 《Energy-based Generative Adversarial Networks》. Junbo Zhao, Michael Mathieu, Yann LeCun

................为此,这篇论文[1] 提出一种 mode-regularized 的思想,来增加对 GAN 训练过程的控制。具体来说,与其上 GAN 中的生成网络 G 直接从 noise vector z 映射到样本空间,我们可以让 z 从一个样本空间先映射过来,也就是有一个 z = encoder(X) 的过程,从而再,G(encoder(X))。这样的好处是,reconstruction 过程会增加额外的学习信息,使得生成网络生成出来的 fake data(generated sample)不再那样容易被判别网络 D 一下子识别出来。这样 D 和 G 就都能一直有 loss/gradient 去将训练过程较为稳定地进行下去,从而达到了让 GAN 训练更加稳定的效果。另一方面,因为 encoder(X) 保证了 X 和映射后的 X 的空间的对应性,也就可以保证了生成网络能覆盖所有样本空间的样本 modes,也就理论上保证了 missing modes 问题的减少。所以,这篇论文[1] 给出的是一种 rugularizer for GAN,而用这样的 regularizer 的 GAN 就被作者叫做 Regularized-GAN(在实验中)。............

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2016-11-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CreateAMind 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档