专栏首页生信技能树乳腺癌预后基因集

乳腺癌预后基因集

主要是靠基因表达数据得到 prognostic gene signatures

In addition to cell of origin and somatic mutation events, studies over the past 10 years have demonstrated that genetic polymorphism can significantly affect gene expression.

using a genetically engineered mouse mammary tumor model we demonstrate that the PAM50 subtype signature of tumors driven by a common oncogenic event can be significantly influenced by the genetic background on which the tumor arises.

虽然 genefu 这个R包收集了非常多,但是毕竟是2012年发表的了。

Signature

Description

Validation

Training platform

Coverage (%)

Intrinsic [1, 21]

Intrinsic subtype

Ref. [2, 3]

Stanford cDNA array

410/549 (75%)

PAM50 [9]

PAM50 subtype

Ref. [9]

Agilent Human oligo array

42/50 (84%)

70gene [4]

MammaPrint

Ref. [5, 22, 23, 24]

Agilent 25 k Human oligo array

46/70 (65.7%)

76gene [6]

Veridex

Ref. [25, 26]

Affymetrix u133a GeneChip

76/76 (100%)

Hypoxia [30]

Hypoxia signature

Ref. [15, 30]

Stanford cDNA array

117/253 (46.2%)a

WR [28]

Wound response

Ref. [15, 29]

Stanford cDNA array

298/380 (78.4%)

GGI [7]

Genomic Grade Index

Ref. [17, 27]

Affymetrix u133a GeneChip

128/128 (100%)

RS [12]

OncoType DX Recurrent Score

Ref. [12, 31]

qRT-PCR

21/21 (100%)

EP [32]

EndoPredict risk score

Ref. [32, 40]

qRT-PCR

11/11 (100%)

一篇2012年的评价文章;Systematic assessment of prognostic gene signatures for breast cancer shows distinct influence of time and ER status

而且即使有那么多的基因集,它们之间的重合情况很差,却都能在各自的数据集表现优异。

所以2017年的文章 Prognostic cancer gene signatures share common regulatory motifs 分析了这个现象。

一篇社评也提到了 Gene-Expression Signature in Breast Cancer—Where Did It Start and Where Are We Now? 那些基因集都有各自的局限性。

一篇综述:Multigene prognostic tests in breast cancer: past, present, future

这些观点同时也适用于其它癌症,所有的基因集都是基于自己特殊的数据集得到的,样本量也不够,研究的病人本身异质性很大,虽然都是同样的癌症,但是可能是不同的分类,不同的进展时期,病人有着不同的遗传背景。

T. Sorlie and R. Tibshirani and J. Parker and T. Hastie and J. S. Marron and A. Nobel and S. Deng and H. Johnsen and R. Pesich and S. Geister and J. Demeter and C. Perou and P. E. Lonning and P. O. Brown and A. L. Borresen-Dale and D. Botstein (2003) "Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets", Proceedings of the National Academy of Sciences, 1(14):8418–8423

Hu, Zhiyuan and Fan, Cheng and Oh, Daniel and Marron, JS and He, Xiaping and Qaqish, Bahjat and Livasy, Chad and Carey, Lisa and Reynolds, Evangeline and Dressler, Lynn and Nobel, Andrew and Parker, Joel and Ewend, Matthew and Sawyer, Lynda and Wu, Junyuan and Liu, Yudong and Nanda, Rita and Tretiakova, Maria and Orrico, Alejandra and Dreher, Donna and Palazzo, Juan and Perreard, Laurent and Nelson, Edward and Mone, Mary and Hansen, Heidi and Mullins, Michael and Quackenbush, John and Ellis, Matthew and Olopade, Olufunmilayo and Bernard, Philip and Perou, Charles (2006) "The molecular portraits of breast tumors are conserved across microarray platforms", BMC Genomics, 7(96)

Parker, Joel S. and Mullins, Michael and Cheang, Maggie C.U. and Leung, Samuel and Voduc, David and Vickery, Tammi and Davies, Sherri and Fauron, Christiane and He, Xiaping and Hu, Zhiyuan and Quackenbush, John F. and Stijleman, Inge J. and Palazzo, Juan and Marron, J.S. and Nobel, Andrew B. and Mardis, Elaine and Nielsen, Torsten O. and Ellis, Matthew J. and Perou, Charles M. and Bernard, Philip S. (2009) "Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes", Journal of Clinical Oncology, 27(8):1160–1167

Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, and Sotiriou C (2008) "Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes", Clinical Cancer Research, 14(16):5158–5165.

Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schutz F, Goldstein DR, Piccart MJ and Delorenzi M (2008) "Meta-analysis of Gene-Expression Profiles in Breast Cancer: Toward a Unified Understanding of Breast Cancer Sub-typing and Prognosis Signatures", Breast Cancer Research, 10(4):R65.

Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J, Sotiriou C. (2012) "A three-gene model to robustly identify breast cancer molecular subtypes.", J Natl Cancer Inst., 104(4):311–325.

Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S; METABRIC Group, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S. (2012) "The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.", Nature, 486(7403):346–352.

Paquet ER, Hallett MT. (2015) "Absolute assignment of breast cancer intrinsic molecular subtype.", J Natl Cancer Inst., 107(1):357.

Aleix Prat, Joel S Parker, Olga Karginova, Cheng Fan, Chad Livasy, Jason I Herschkowitz, Xiaping He, and Charles M. Perou (2010) "Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer", Breast Cancer Research, 12(5):R68

本文分享自微信公众号 - 生信技能树(biotrainee),作者:jimmy

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-05-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 没有生物学背景的数据分析很危险

    本来以为是很简单,但是十万粉丝里面,我只收到了13份作业,可怜的13份答卷里面,还有5个是错的!其中大家错的最离谱的就是,搞不清楚文中的WGCNA针对的5个分组...

    生信技能树
  • 代谢组学数据一般存放在MTBLS

    这次又接触了一下代谢组学数据,看的文章是 Cell. 2019 May 2;177(4):

    生信技能树
  • dbSNFP数据库发展历程

    生信技能树
  • ACL 2018 计算语言学协会接受论文列表

    WZEARW
  • 用于NLP的Python:使用Keras进行深度学习文本生成

    文本生成是NLP的最新应用程序之一。深度学习技术已用于各种文本生成任务,例如写作诗歌,生成电影脚本甚至创作音乐。但是,在本文中,我们将看到一个非常简单的文本生成...

    拓端
  • IJPR特刊邀稿| 主题:生产和配送管理中的大数据分析

    The International Journal of Production Research (IJPR), published since 1961, i...

    用户1621951
  • 促进包容性获取丰富在线内容和服务的策略研究

    中文摘要:在线访问内容和服务对每个人,包括残疾人,都越来越重要。包括《美国残疾人法》在内的各国承诺,以及包括《联合国残疾人权利宣言》在内的国际决议,都要求努力确...

    用户7454122
  • 深度学习与TensorFlow:FCN论文翻译(三)

    We test our FCN on semantic segmentation and scene parsing, exploring PASCAL VOC...

    云时之间
  • 公共市场审计自动化和构建信任的区块链体系结构(CS CS)

    上市公司的业务交易需要定期报告、核实和审计,这是一个传统的劳动密集型和耗时的过程。为了简化这一程序,我们设计了FutureAB(未来审计区块链),旨在自动化报告...

    蔡秋纯
  • 机器学习研究和开发所需的组件列表

    Here is a list of components that are needed for the successful machine learning...

    iOSDevLog

扫码关注云+社区

领取腾讯云代金券