东京大学研究人员开发机器学习算法,可强制进行公平约束以防止偏见

编译:chux

出品:ATYUN订阅号

机器学习正在改变现代生活,但机器学习面临的问题之一是人为偏差。

我们很容易假设使用算法进行决策可以消除人为偏差。但研究人员发现机器学习可以在某些情况下产生不公平的决定。

例如雇用某人从事某项工作,如果算法的数据表明男性比女性更有生产力,那么机器很可能“学习”这种差异并且有利于男性候选人而不是女性候选人,而忽略了输入数据的偏见。管理人员可能无法发现机器的歧视,认为自动决策本质上是中立的,导致不公平的招聘行为。

在第35届机器学习会议论文集上发表的新论文中,SFI博士后研究员Hajime Shimao和东京大学研究员Junpei Komiyama提供了一种确保机器学习公平性的方法。他们设计了一种算法,强制公平约束,以防止偏见。

“比如黑人和白人的信用卡批准率差异不能超过20%。通过这种约束,我们的算法可以给出满足约束的最佳预测,”Shimao表示,“如果你想要20%的差异,请告诉我们的机器,我们的机器可以满足这个限制。”

Komiyama补充说,这种精确校准约束的能力使公司能够确保遵守联邦的不歧视法律。此算法能够严格控制法律所要求的公平程度。

Shimao和Komiyama在研究中指出,纠正偏见涉及权衡。因为约束可以影响机器读取数据的其他方面,它可能会牺牲一些机器的预测能力。

Shimao表示,他希望企业能够使用该算法来帮助消除可能潜藏在机器学习计划中的歧视。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-07-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

干货 | 这里有一篇深度强化学习劝退文

AI 科技评论按:本文作者 Frankenstein,首发于作者的知乎主页,AI科技评论获取授权转载。 今天在学校又双叒叕提到了 Deep Reinforcem...

7466
来自专栏腾讯高校合作

犀牛鸟人物丨专访刘偲老师:图像之美像素级语义理解研究

2553
来自专栏腾讯技术工程官方号的专栏

腾讯在乳腺癌影像AI诊断方向的探索

导读:4月12日,2018中国“互联网+”数字经济峰会在重庆召开。当天下午的医疗AI分论坛吸引了众多国内顶尖的学术科研人士参与,中国工程院院士、国家消化病临床医...

4726
来自专栏量子位

在鉴定名画真伪这件事上,专家可能要被AI代替了

原作 Jackie Snow Root 编译自 Technology Review 量子位 出品 | 公众号 QbitAI 鉴别画作真假的难度非常大,还特别烧钱...

2814
来自专栏量子位

腾讯医疗AI新突破:提出器官神经网络,全自动辅助头颈放疗规划 | 论文

这次跟美国加州大学合作,在国际权威期刊《Medical Physics》发表最新研究成果:

1182
来自专栏大数据文摘

机器视觉与深度神经网络—洗去浮华,一窥珠玑

3174
来自专栏大数据文摘

金融风控领域的工业级大数据应用: 如何跨越AI与业务经验结合前的鸿沟?

1702
来自专栏企鹅号快讯

理性的相亲方法!精品课:《决策树》

今天是我坚持的第两百一十一天!每天逼自己成长进步一点! 假如你是一个女孩子,你妈妈一直很为你的终身大事担心,今天又要给你介绍对象了。你随口一问:多大了?她说:2...

2149
来自专栏大数据文摘

AI教父Geoff Hinton和深度学习的40年

因为伤了背,Geoff Hinton已经站着工作了12年,似乎巧合地迎合了现在“站立工作”的这股风潮。

1122
来自专栏量子位

LeCun:现在还没有真正的AI系统,机器与生物系统差远了

? 可能我们现在提到的AI都是假AI。 近日,Facebook首席人工智能科学家Yann LeCun在纽约大学坦登工程学院的AI研讨会上谈了谈AI的历史和方向...

3349

扫码关注云+社区

领取腾讯云代金券