玩转itchat,实现好友信息可视化、聊天机器人及性别模型构建

前些日子,女朋友拿我手机玩,说我微信好友女生多,当时我就不服了(跪着认错了),然后两人一个个统计性别,我微信好友不算多,但也有300来个,人工统计实在费事,之后事情也就不了了之了(打了我一顿)。 昨天突然想到itchat库可以获取微信好友信息,所以又拿出来玩了一下,为什么说又了?之前用过itchat制作好友全头像,链接(https://www.jianshu.com/p/684cbdf15874)。所以今天继续使用itchat来玩转好友信息。

涉及内容

为了让小白也能自己学会使用,本文涉及的内容包括以下部分:

  • 环境安装
  • 小试牛刀
  • 微信好友统计可视化
  • 微信机器人
  • 性别预测

环境安装

本人使用的是anaconda3的Python环境(该环境拥有数据科学的大部分库,例如:numpy,pandas,sklearn),除此之外,需要安装第三方库。itchat用于获取微信好友信息;pyecharts用于绘制统计图,另外绘制地图需要安装地图 js 文件,不然地图无法显示;jieba用于统计词频,用于绘制词云图。通过下面代码一一安装即可:

pip install itchat
pip install pyecharts
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install jieba

小试牛刀

安装完itchat,就可以通过下面的代码给文件助手发消息了,这里给自己发没意思,决定给女朋友发一个(首先你得有一个女朋友,其次她愿意扫码登陆)。

import itchat

itchat.auto_login()  ##登陆

itchat.send('美女', toUserName='filehelper')
itchat.send('早上好', toUserName='filehelper')

微信好友统计可视化

数据收集

首先通过itchat获取好友的信息,第一个其实是自己,所以保存数据需要跳过第一个好友。

friends = itchat.get_friends(update=True)[0:] #获取数据
print(friends[0])

根据分析情况,获取部分字段数据,并保存在csv文件中。

import csv

f = open('C:/Users/LP/Desktop/1.csv','w+',encoding='utf-8',newline='')
writer = csv.writer(f)
writer.writerow(['NickName','Sex','City','Province','Signature'])

for i in friends[1:]:
    writer.writerow([i['NickName'],i['Sex'],i['City'],i['Province'],i['Signature']])

#pandas读数据
import pandas as pd

df = pd.read_csv(open('C:/Users/LP/Desktop/1.csv',encoding='utf-8'))
df.head()
性别分布

首先对性别进行统计(慌得一匹),并使用pyecharts库进行可视化分析。如图可以看出,男性比例还是更多一些的,外星人是没有设置性别的好友。

data1 = df.groupby('Sex')['Sex'].count()

from pyecharts import Pie

attr = ['外星人','男性', '女性']
v1 = list(data1)
pie = Pie('微信好友性别分布')
pie.add("", attr, v1, is_label_show=True)
pie
地区分布

地区字段有缺失值,我们通过布尔选择过滤到缺失值后,通过groupby统计个数,利用pyecharts库进行可视化。 由于本人是湖南人,并且求学一直都没有离开过湖南,所以湖南的人数最多,其他省份的人数都是较少的。

new_df2 = df[df['Province'].notnull()]

data = new_df2.groupby('Province')['Province'].count()
# 绘图
from pyecharts import Map

label = list(data.index)
value = list(data)
map = Map('微信好友地区分布情况', width=1200, height=600)
map.add("", label, value, maptype='china', is_visualmap=True,
        visual_text_color='#000')
map
词云图

最后,通过jieba分词,计算词频,绘制好友个性签名的词云图。曾经我们90后的杀马特QQ昵称、个性签名,大家是否还记得?情殇、浅唱、爱你就是一辈子....还记得我最早的QQ昵称是泷太子... 这里可以看到本人微信好友英语不错的样子,各种英语秀的我头皮发麻,他们时而愤青(个性、随意),不远随波逐流; 时而低落(浅醉、唯心),为生活颠簸; 最后不得而变得中庸(平凡,留不住)。

str_data = ''
for i in range(new_df.shape[0]):
    str_data = str_data + new_df.iloc[i,4]

# 正则去掉部分非法字符
import re
str_data = re.sub('span', '',str_data,re.S)
str_data = re.sub('class', '',str_data,re.S)
str_data = re.sub('emoji', '',str_data,re.S)

# jieba分词统计
import jieba.analyse
tags = jieba.analyse.extract_tags(str_data, topK=50, withWeight=True)
label = []
attr = []
for item in tags:
    label.append(item[0])
    attr.append(int(item[1]*1000))

# 绘图
from pyecharts import WordCloud

wordcloud = WordCloud(width=800, height=620)
wordcloud.add("", label[3:], attr[3:], word_size_range=[20, 100])
wordcloud

微信机器人

首先,我们需要去图灵机器人网站(http://www.tuling123.com/)注册机器人账号,获取apikey,使用自己的apikey即可运行代码,完成微信机器人的工作。

import requests
import itchat

KEY = '这里为申请的apikey'

def get_response(msg):
    apiUrl = 'http://www.tuling123.com/openapi/api'
    data = {
        'key'    : KEY,
        'info'   : msg,
        'userid' : 'wechat-robot',
    }
    try:
        r = requests.post(apiUrl, data=data).json()
        return r.get('text')
    except:
        return

@itchat.msg_register(itchat.content.TEXT)
def tuling_reply(msg):
    defaultReply = 'I received: ' + msg['Text']
    reply = get_response(msg['Text'])
    return reply or defaultReply

itchat.auto_login(hotReload=True)
itchat.run()

性别预测

最后,我们尝试使用用户昵称来构造分类模型,预测昵称的用户性别。

数据整理

首先导入需要的库,接着合并数据(这里有8份好友数据),然后筛选出用户性别为男和女的用户。

import pandas as pd
import os
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

list_all = os.listdir('C:/Users/LP/Desktop/info_friend')
all_list = []
for i in list_all:
    path = 'C:/Users/LP/Desktop/info_friend/' + i
    df = pd.read_csv(open(path,encoding='utf-8'))
    all_list.append(df)
all_data = pd.concat([all_list[0],all_list[1],all_list[2],all_list[3],all_list[4],all_list[5],all_list[6],all_list[7]])

df = all_data[(all_data['Sex'] == 1) | (all_data['Sex'] == 2)]
数据预处理

这里划分数据集,并通过CountVectorizer将数据转换为词向量。

X_train, X_test, Y_train, Y_test = train_test_split(df['NickName'], df['Sex'], test_size=0.2, random_state=22)

from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
X_train_cov = count_vect.fit_transform(X_train)
模型训练及评价

用最简单的朴素贝叶斯来进行建模,并进行模型评价。通过结果看出,数据在训练样本精度很高,而在测试样本严重欠拟合。

clf = MultinomialNB(alpha=0.0001)
clf.fit(X_train_cov, Y_train)

clf.score(X_train_cov, Y_train)

X_test_cov = count_vect.transform(X_test)
clf.score(X_test_cov, Y_test)

test = ['陈傻逼','罗罗攀','ace','我是小仙女']
X = count_vect.transform(test)
clf.predict(X)
不足与讨论

由于时间精力不足,模型预测结果有待优化,读者可尝试以下方法进行优化:

  • 扩大数据集
  • 文本处理
  • 算法选择
  • 模型的优化

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏算法+

WebRTC 音频采样算法 附完整C++示例代码

之前有大概介绍了音频采样相关的思路,详情见《简洁明了的插值音频重采样算法例子 (附完整C代码)》。 音频方面的开源项目很多很多。 最知名的莫过于谷歌开源的Web...

1.4K60
来自专栏数据小魔方

excel规划求解

今天要跟大家分享的是excel的规划求解的功能! excel的规划求解功能据说很强大,可以求解很多线性规划和其他最优化问题。 但是这个功能我们日常使用的频率却一...

35950
来自专栏生信技能树

GSEA分析一文就够(单机版+R语言版)

通过前面的讲解,我们顺利的了解了GEO数据库以及如何下载其数据,得到我们想要的表达矩阵,但,这只是分析的开始,最经典的分析就是GSEA了,看看基因全局表达量的变...

1.2K50
来自专栏Vamei实验室

绘图: matplotlib Basemap简介

在数据可视化过程中,我们常常需要将数据根据其采集的地理位置在地图上显示出来。比如说我们会想要在地图上画出城市,飞机的航线,乃至于军事基地等等。通常来说,一个地理...

52950
来自专栏郭艺帆的专栏

ARKit 进阶:物理世界

ARKit的渲染能力是由其他框架实现的,除了苹果的SceneKit, Unity3D、UE, 或者其他自定义的OpenGL、Metal渲染引擎都可以与ARKit...

56370
来自专栏PPV课数据科学社区

【学习】SPSS预测分析模型商用:应用关联规则模型提高超市销量--关联分析(购物篮)

前言 在数据挖掘项目中,数据理解常常不被重视。但其实数据理解在整个数据挖掘项目中扮演着非常重要的角色,可以说是整个项目的基石。在计算机领域有一句话,“Garba...

47040
来自专栏新智元

美国大选倒计时:R 语言和蒙特卡洛算法预测希拉里赢面高达89%

【新智元导读】美国总统大选近在眼前,上周新智元刊登相关文章《从未失手的 AI 预测:川普将赢得选举,入主白宫》引起很多争论。这次我们选择了一篇用 R 语言和蒙特...

39760
来自专栏java一日一条

如何用Python写一个贪吃蛇AI

这两天在网上看到一张让人涨姿势的图片,图片中展示的是贪吃蛇游戏, 估计大部分人都玩过。但如果仅仅是贪吃蛇游戏,那么它就没有什么让人涨姿势的地方了。 问题的关键在...

29520
来自专栏CDA数据分析师

7 款 Python 数据图表工具的比较

Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析。数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的...

443100
来自专栏数据小魔方

R语言可视化——多边形与数据地图填充

ggplot函数中有一类特殊的图表类型叫做多边形,很难用传统的视角来定义它属于哪一类图表,因为它能够呈现信息多种多样。 特别是在做某些比较高阶的图表——地图时,...

35640

扫码关注云+社区

领取腾讯云代金券