MIT-线性代数笔记(1-6)

学习目录

第 01 讲 行图像和列图像

第 02 讲 矩阵消元

第 03 讲 矩阵的乘法和逆矩阵

第 04 讲 矩阵的LU 分解

第 05 讲 转置、置换和空间

第 06 讲 列空间和零空间

第 07 讲 求解 Ax=0:主变量,特解

第 08 讲 求解Ax=b:可解性与解的结构

第 09 讲 线性相关性、基、维数

第 10 讲 四个基本子空间

第 11 讲 矩阵空间、秩1矩阵和小世界图

第 12 讲 图和网络

第 01 讲 行图像和列图像

第 02 讲 矩阵消元

  只要矩阵可逆,均可通过消元法求得 Ax=b 的解

  若此处

  高斯消元法:

  对方程组中某个方程进行时的那个的数乘和加减,将某一未知系数变为零,来削弱未知数个数

  矩阵左上角 1 为“主元一”

  ① 用消元法将除了第一行,消除其他行中的主元一

  主元不能为0,如果恰好消元至某行,0出现了主元的位置,应当通过与下一行进行“行交换”,使得非零数字出现在主元位置上;如果此时下方没有对等位置上非零,则消元终止并证明此矩阵不可逆,且线性方程组没有唯一解

回代

  应用增光矩阵,对等式右侧做同样运算

第 03 讲 矩阵的乘法和逆矩阵

1)标准乘法(行*列)

2)列操作

3)行操作

4)分块乘法

第 04 讲 矩阵的LU 分解

第 05 讲 转置、置换和空间

一、置换矩阵Permutation

置换矩阵:可进行交换的矩阵,是行重新排列了的单位矩阵。注意点: 1)单位矩阵是最基本的置换矩阵。

2)n揭一共有n!个置换矩阵。 3)所有置换矩阵都可逆,而且逆与其转置相等。一个置换矩阵乘以其转置等于单位矩阵。

二、向量空间Vectorspaces,子空间subspaces重点理解向量空间概念,子空间概念

向量空间:

表示有很多向量,一整个空间的向量。但并不是任意向量的组合都能成为空间。必须满足一定规则,必须能够进行加法和数乘运算,必须能够进行线性组合,对加法和数乘运算封闭。

向量空间性质(或者说需要满足的规则):对加法和数乘运算封闭,或者说对线性组合封闭,即所有的空间内的向量线性组合后仍在空间内。

子空间:

满足空间规则,但又不需包含所有向量。取某向量空间的部分空间(显然得到的就不是向量空间了),这部分中的向量不管是加法还是数乘,结果依然在此部分空间内,这就是子空间。

  R2的子空间:1)穿过原点的直线;2)原点;(特别注意,这不是零空间,只能说零向量是R2的子空间)3)R2   R3的子空间:1)穿过原点的直线;2)穿过原点的平面;3)原点;(特别注意,这不是零空间)4)R3

第 06 讲 列空间和零空间

如下例子,A的列空间是R4的子空间,记为C(A),抽象起来:A的列空间由A三个列向量的线性组合组合构成。

这个空间到底是什么样子?它等于整个四维空间吗?

不等于,它只是相当于四维空间的一个较小的空间。 抽象背后的实际目的,都是为了深刻认识Ax=b,Ax=b是否对任意b(右侧向量)都有解?或者说,什么样的b使方程组有解? Ax=b对任意b并不总有解,因为Ax=b中有四个方程,却只有三个未知数。方程组不总有解,因为3个列向量的线性组合无法充满整个四维空间,因此还有一大堆的b不是这三个列向量的线性组合。

怎样的b,能让方程组有解,什么样的右侧向量有这种性质?什么b让方程组有解?

1)b为零向量。Ax=0总有一个零解 2)b是列向量的线性组合。Ax=b有解,当且仅当右侧向量b属于A的列空间。(列空间包含所有A乘以任意x得到的向量,也就是包含所有有解的b) 列空间是非常核心的内容,它能告诉我何时方程组有解。

更深入一些的问题,以上三个列向量是否线性无关,是否有某个向量并没有起到作用,能否去掉某列,得到同样的列空间?上面的A,其实可以去掉第三列,因为第三列是前两列的和线性组合,我们把前两列称为A的主列。其实,我们同样可以去掉第一列或者第二列,因为他们是其余两列的差线性组合。不过按照惯例,优先考虑靠前的线性无关向量。

求解零空间 一般方法为消元法。但上式的解很容易看出来

怎样描述这个零空间,这里的零空间是R3中穿过原点的一条直线。

如下,考虑另外一个问题,右侧b向量取一个非0向量,此时x有解,(这时x的解不是零空间了),那么所有的x解构成子空间吗?很明显不构成子空间,或者说向量空间。因为很明显0向量不在这个空间内,没有0向量,就不用谈向量空间了(原因很明显,数乘运算中,常数取0时需要满足封闭规则)。

那么它的解是什么?(100),(0-1-1)。。。它实际上是一条不穿过原点的直线(或者在别的更普通的例子中是不穿过原点的平面)

以上两种子空间的总结:

有两种方法构造子空间,其一是通过列的线性组合构造列空间,其二是求解向量必须满足的方程组来构造子空间(通过让x满足特定条件来得到子空间,Ax=0将构造出零空间)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏我是攻城师

opencv里面直方图的意义

3276
来自专栏绿巨人专栏

神经网络学习笔记-03-循环神经网络-反向传播计算公式的证明

2786
来自专栏开心的学习之路

神经网络体系搭建(三)——卷积神经网络

本篇是神经网络体系搭建的第三篇,解决体系搭建的卷积神经网络相关问题,详见神经网络体系搭建(序) 卷积神经网络(CNN) ? CNN是什么 卷积神经网络是一种空间...

3798
来自专栏算法channel

深度学习|卷积神经网络(CNN)介绍(后篇)

01 — 回顾 昨天介绍了CNN的卷积操作,能减少权重参数的个数,卷积操作涉及到三个超参数: 深度(Depth) 步长(Stride) 零填充(Zero-pad...

4885
来自专栏yl 成长笔记

已经两点求直线方程(多维空间)

已知两点 p1(a1, b1, c1), p2 (a2, b2, c2)  求直线方程。

1613
来自专栏AI研习社

用Kaggle经典案例教你用CNN做图像分类!

前言 在上一篇专栏《利用卷积自编码器对图片进行降噪》中,我们利用卷积自编码器对 MNIST 数据进行了实验,这周我们来看一个 Kaggle 上比较经典的一...

4006
来自专栏IT派

推荐|数据科学家需要了解的5大聚类算法

IT派 - {技术青年圈} 持续关注互联网、大数据、人工智能领域 聚类是一种涉及数据点分组的机器学习技术。给定一个数据点集,则可利用聚类算法将每个数据点分类...

3207
来自专栏marsggbo

DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍

一、计算机视觉 ? 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计...

22110
来自专栏xingoo, 一个梦想做发明家的程序员

吴恩达机器学习笔记 —— 18 大规模机器学习

有的时候数据量会影响算法的结果,如果样本数据量很大,使用梯度下降优化参数时,一次调整参数需要计算全量的样本,非常耗时。

871
来自专栏机器学习养成记

聚类(三):KNN算法(R语言)

k最临近(KNN)算法是最简单的分类算法之一,属于有监督的机器学习算法。 算法流程 KNN的核心思想是:找出特征空间中距离待分类点最近的k个点,如果这k个点大多...

3747

扫码关注云+社区