如何提升数据的价值让大数据变现?

作者:中关村老李 转自:36大数据(http://www.36dsj.com/)

导读

这是一篇行业“清醒文”,作者对大数据变现有着清醒的认识,并结合自己的实践经验进行阐述。同时,这也是一篇“退烧文”,是给高举高打大数据概念的现象来了一剂退烧针。再者,这是一篇把大数据和商业进行结合的“理智文”,大数据处理技术固然重要,但更重要的是找到商业模式,形成数据闭环。文章把数据价值从“发现规律”到“产生聚变”,最后到形成“核变”的过程进行了梳理。到底是要走情怀路线还是商业路线,值得行业人员细细思考。如果您的公司在做大数据,相信你会找到共鸣。

近来看很多人都在谈大数据变现的事情,大家都分享了在各行各业,用大数据赚到钱的招数。相信随着大数据在各行各业的深入,还会有更多人分享出更多精彩的案例。今天我想谈一点个人对数据的看法,理清楚几个概念,也许对大家能有所帮助。

数据的价值与体现

数据是有价值的,如果在一年以前很多人会质疑这个观点,但我相信现在更多的人支持这个观点。数据都是有价值的,不同质量的数据,不同的价值,数据的价值是客观存在的。

数据不是凭空而来的,数据是一个场景,一个业务,一个应用产生而来。所以数据的价值是它产生的环境,过程的独特属性而赋予的。数据可以有很多属性,就我们所知,可以有金融属性,也可以是任何一个领域的独特属性。正是这些具有不同属性的数据,造成了数据价值,应用层面的差异化。

举个例子,什么是具有金融属性的数据,比方说你的每月收入,你的信用卡消费,你的网购消费,你的房贷、车贷等等,都形成了你的金融属性数据。金融属性的数据产生的过程离钱最近,也最有价值。它直接可以利用为征信,乃至金融风控。

同样,你每天上网看信息、社交,听歌,打游戏,搜索,看视频等等,都会产生很多行为、偏好和社交属性的数据。通过这些属性就可以勾勒出一个人的用户画像。

我们再来看数据的变现。数据的变现,就是把这些不同属性的数据再次应用到场景(当然更多地还是新场景,跨域关联可能产生更高的价值)中去,体现新价值的过程。变现,是一种能力,也是提升数据价值的基础。没有变现的能力,提升数据价值就是空谈。如何更好地提升数据价值那就更是天方夜谭了。

为什么多数知名大数据公司对“变现”表现的不像他们对大数据技术本身那样游刃有余?因为这本身就是两种截然不同的能力!

掌握了高深的数据处理技术,与了解应用场景,解决客户的实际问题,并能够进一步将其提炼,包装成业务,是两个完全不同的能力。简而言之,在多数大数据公司里面,并不具备这个能力。没有理由证明有高深的数据处理技术,就一定可以做好变现。相反,我看到的大多都是反面教材!

变现能力,是将技术转化成生产力的能力。很多大数据公司忽略了这个能力,甚至是主观上忽略,看不起变现能力,过于夸大技术驱动市场。这也是目前大数据市场上,很普遍的现象。

还有一种情况,是对数据本身知之甚少,介入行业时间短,自然难以变现。

上面两种情况,属于两个目前市场上最常见的两种情况。第一种多为在行业里多年,也确实有比较高深的数据处理技术,但主观上就轻视变现,认为掌握了顶尖的技术,就可以改变世界。我年轻的时候也想过,可惜没成。所以啊,这些公司不是没价值,大数据的发展依然少不了他们的推动,但恐怕就要朝基础科学的阵营里去走了。大数据确实还属于一个前沿科学,真的不是每个大数据技术都可以很好地被应用到市场中来。对于这部分公司,走情怀路线,我很尊敬的。

第二种情况,还是多历练历练再说吧。我一直认为市场是公平的。要想在一个行业中持续获利,还是先搞懂这个市场再说吧。熟能生巧。

市场上,有一个误区,“我之所以在大数据领域赚不到钱,是因为我没有掌握高深的数据处理技术”。我以亲身经历负责任地说,有时大数据赚钱并不一定需要高深的技术。我们就是用了并不是很高深的处理技术,为很重要的客户提供了数据服务,解决了他们很关键很头疼的问题,创造了很大的价值,并且已经将其包装成具有普适性的,可以推广的业务了。

当然,也不是说数据处理能力不重要。没有足够的数据处理能力,不知道什么数据可以做什么用,即使机会摆在你面前,也是抓不住的。只有拥有了足够的数据处理能力以及丰富的行业经验,能准确地挖掘用户的实际需求,对各类数据有一个全面了解的公司,才可能“举重若轻”。既然可以用简单地办法实现用户的目的,又何必炫技呢?

大数据是一种技术,是一种工具,不要把它过于神话,再好的技术也是为应用而来的。作为一家数据公司(区别于上面的第一种公司,那个基本可以叫研究院),首要的能力就是要懂得变现;最大的使命,就是使你手头的数据价值最大化!如果不懂得如何变现,怎么能证明你懂得数据的价值,能够为客户创造更多的价值呢?只能是孤芳自赏。

提升数据价值的三种方法

数据产生于业务或者应用,那么体现价值的最好办法就是回归到业务。数据回归到业务有三个层级的方法,由远及近,首先是数据的挖掘,这个自不必说了;其次是数据的打通,如果说挖掘是提升数据价值的一次体现,那么数据的打通就是使数据发生核聚变的一次“反应”;最后,也是最高级的实现方法,就是流转。数据的流转就是数据又流动到业务。这个流回不是简单地回流,而是经过了数据的加工处理,又返回业务,产生新的数据,形成闭环。

在这里,尤其加上跨界的数据,或者说具有不同属性的数据进行加工,流转,形成新的业务数据,就可以使原有的数据价值得到一个极大的升华。

很多人估计还不是真正清楚为什么要数据挖掘?数据挖掘是揭示人们可能忽视的或者检视人们依靠主观经验判断错误的事物。除了大家已经耳熟能详的啤酒喝尿不湿的关联关系,你能想象出为什么很多客户会同时买一个100元左右的包,再去买一个900多元的包吗?但事实如此。所以数据挖掘是数据价值的第一次提升。数据的世界很精彩!

再举个例子,比方说我们有很多ID,很多单维度的数据。目前单一的ID以及关联的单维度数据价值并不高。因为它只揭示了很小部分的特征,只能继续用回产生数据的业务场景。

如果我们又刚好获得了几个不同的ID以及其关联的另外属性的数据,虽然它们每一个价值依然都不大,但我们就可以尝试将其打通,产生更大的价值。假设几个不同ID以及数据的起点成本是1,那么当我们通过几十种不同的模型将其分类、打通之后,就远远大于1.在这个过程里,是1+1>>2.这是一个核聚变的过程。并不是我在这里空谈,而是市场的认可。

如果在能够将打通的数据,应用到某种场景当中,产生新的数据,那就会是又一个巨大的飞跃!因为数据的价值是场景的价值决定的,它产生的价值越高,其本身的价值也就越高。

比方说我利用打通的数据解决了用户的一个顽疾,避免了它每笔100元的损失,那么他是否愿意为此支付10元每笔呢?如果是,那么我的数据价值就是10元。

我们再以一个实际的例子去串起来数据价值的改变过程。我们的起点是一些互联网数据的碎片,假设价值为1。经过了清洗、分类、筛选、打通,就成为了5;再经过与其他数据的拼接,就构成了用户画像,那么作为征信生产材料的一部分,被应用到征信场景中来,就可能再次翻倍,成为10。在数据的应用过程中,数据的属性在不断地增加、提炼,最终得以升值。

总之,数据的变现也好,提升数据的价值也好,可以有很多渠道,有很多场景。只要你用心,懂市场,这些都不难找到。大数据虽不是万能的,但没有数据是万万不能的。法无定法,不要过于纠结什么商业模型。大数据即便今天依然是一个新业务,在行业的应用过程中,要尊重市场的规律,以市场为导向,并不是喊喊口号而已。大数据是工具,是一门技术而已,不要将其神话。再好的技术,再好的工具也是为解决问题而来的。

数据是有属性的,不同的场景,不同的业务,不同的应用,不同的对象,产生不同的数据,具有不同的属性。不同的业务需要不同属性的数据。比方说征信,首先需要的是金融属性的数据,而非行为数据。你对这个人的行为再了解,不代表对这个人的金融属性了解。这是一门严谨的科学,不可儿戏。

在大数据公司提升自己数据的价值过程中,确实存在价值最大化的可能。同样的数据价值基础,朝不同的业务方向上去走,得到的价值提升是不同的。当然这一点是建立在解决好上面问题的基础上才能实现的。没有上面基于对数据属性的了解,不懂得如何运用数据去解决用户的实际问题,就根本谈不上更好地提升数据价值了。

作者:中关村老李,2015年加入海航云商,任总经理,筹建大数据业务部,主要业务方向是互联网金融风控;专长于精细化运营、个性化推荐、移动互联网广告精准投放、机器学习等大数据细分领域。

END

版权声明: 转载文章均来自公开网络,仅供学习使用,不会用于任何商业用途,如果出处有误或侵犯到原作者权益,请与我们联系删除或授权事宜,联系邮箱:holly0801@163.com。转载大数据公众号文章请注明原文链接和作者,否则产生的任何版权纠纷与大数据无关。

原文发布于微信公众号 - 大数据(hzdashuju)

原文发表时间:2016-08-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

人工智能时代来临,李开复:未来人类只剩下两类工作创造和关爱

人工智能时代来临,李开复:未来人类只剩下两类工作创造和关爱 ? 李开复认为未来人类真的只剩下两类工作,一个是创造未来,推动创造力,包括科学、文学、艺术等工作。另...

2016
来自专栏AI研习社

职播间 | 基于定制数据流的AI应用

深度学习已经在安防,金融,自动驾驶等领域得到了广泛的应用。市场上的方案大多是基于GPU或者精简指令集RISC架构,通过增加多个处理单元提升计算能力。本次介绍会讲...

812
来自专栏非著名程序员

爆料一下,我的面试之道

继昨天写了我的学习方法之后,没想到这么多人感慨我的学习之道,都说我自律,是我自律吗?我不这么认为,我感觉只是我稍微比别人努力一下罢了,并没有真正做到我心中的自律...

1623
来自专栏织云平台团队的专栏

AIOps线下沙龙回顾

前言 近年,人工智能和机器学习不断发展,传统的IT运维,也从自动化运维逐渐升级到未来的智能化运维时代。得益于此,AIOps应运而生,也就是基于算法的IT运维(A...

44810
来自专栏华章科技

揭秘微信用户行为习惯,用户究竟爱看什么?

只有深度了解用户的习惯和行为,才能做出最火的内容;用户为何选择分享某些信息,又为何对某些信息视而不见,了解这些有助于在注意力的竞争中占尽先机。

4271
来自专栏PPV课数据科学社区

白宫大数据团队,意欲何为?

周四白宫通过博客选对宣布将成立专门团队研究大数据,誓要弄懂大数据能带来什么好处,也要明白大数据背后的陷阱,以及大数据对政府的政策制定的影响。(大数据主要针对个人...

3404
来自专栏DT数据侠

让数据讲故事:如何在8秒内抓住你的用户

当数据遇上设计师,会给品牌内容营销带来怎样的生机?7月15日的数据侠实验室第15期活动上,DT君请到了DT设计师小哥哥小姐姐们的大BOSS——第一财经商业数据中...

780
来自专栏CDA数据分析师

为什么你学完了68个Python函数,却依旧做不好数据分析?

? 作者 Gam 本文为CDA数据分析师原创作品,转载需授权 数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了...

3787
来自专栏区块链入门

用数据驱动进行精益创业实践[增长黑客]

1),精益创业代表了一种不断形成创新的新方法,提倡企业进行“验证性学习”,先向时常推出极简的原型产品[MVP-minimum viableproduct],然后...

822
来自专栏CSDN技术头条

Teradata面向大中华区推出Think Big业务,融合开源提供大数据咨询服务

近日,大数据分析服务供应商Teradata天睿公司举行媒体沟通会宣布,旗下Think Big公司正式进军大中华区市场,面向客户提供开源数据分析的咨询服务,融合优...

2208

扫码关注云+社区

领取腾讯云代金券