前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >应用:数据预处理-缺失值填充

应用:数据预处理-缺失值填充

作者头像
sladesal
发布2018-08-27 11:23:04
1.1K0
发布2018-08-27 11:23:04
举报
文章被收录于专栏:机器学习之旅

个人不建议填充缺失值,建议设置哑变量或者剔除该变量,填充成本较高

常见填充缺失值的方法:

1.均值、众数填充,填充结果粗糙对模型训练甚至有负面影响

2.直接根据没有缺失的数据线性回归填充,这样填充的好会共线性,填充的不好就没价值,很矛盾

3.剔除或者设置哑变量

个人给出一个第二个方法的优化思路,供参考:

假设存在val1~val10的自变量,其中val1存在20%以上的缺失,现在用val2-val10的变量去填充val1,这边参考了两个模型的设计思路,一个是bagging算法的随机抽取避免过拟合,另一个是Tomek+Somte的填充方法

大概思路是:

1.随机选取val1里面的n/N个case(包括缺失case及非缺失case)作为样本,随机选取val2-val10内的m个衡量特征

2.然后根据选择的具体的m个数据的衡量特征选择相似度计算方式(常见的直接算距离、余弦相似度之类),找出3-5个最临近的非缺失case或者最远的非缺失case(这里涉及全局或者局部最优)

3.构造新的val1填充缺失的val1,新val1计算方式可以为3-5个非缺失的众数、重心、随机游走、加权填充等

4.重复若干次,填充完所有缺失val1的点,当前的val1有非缺失case+填充case组成

5.这样填充的方式存在填充case过拟合或者额外产生异常点的风险,所以需要做“新点检测”,存在两个逻辑:

5.1假设存在新填充点x,x附近最近的3-5点均为新填充点,及该点为危险点

5.2假设存在新填出点x,x距离最近的非缺失case距离大于预先设置的阀值(一般为离群处理后,所有非缺失case到缺失case距离的平均),及该点为危险点

6.危险点可以重新进行1-5,也可以剔除,视情况而定

在预处理后均衡样本上填充,基于租车行业偷车用户的年龄段填充,而后判断某出行平台用户是否存在偷车可能,实际上做下来的ROC效果对比如下图(数据有所隐逸,不代表官方数据):

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017.06.21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档