差异分析③

  • 统计差异基因数目
tfit <- treat(vfit, lfc=1)
dt <- decideTests(tfit)
summary(dt)
        BasalvsLP BasalvsML LPvsML
Down        1417      1512    203
NotSig     11030     10895  13780
Up          1718      1758    182

一些研究需要不止一个调整后的p值cutoff值。 为了对重要性进行更严格的定义,可能需要log-fold-change(log-FC)超过最小值。 一般用来计算经验贝叶斯慢化t-统计的p值,并具有最小的log-FC要求。

  • 保存文件
de.common <- which(dt[,1]!=0 & dt[,2]!=0)
length(de.common)


vennDiagram(dt[,1:2], circle.col=c("turquoise", "salmon"))
write.fit(tfit, dt, file="results.txt")
#使用topTreat输出差异基因信息
#The top DE genes can be listed using topTreat for results using treat
# (or topTable for results using eBayes). 
#By default topTreat arranges genes from smallest to largest adjusted p-value with associated gene information, 
#log-FC, average log-CPM, moderated t-statistic, 
#raw and adjusted p-value for each gene. 
#The number of top genes displayed can be specified, where n=Inf includes all genes. 
basal.vs.lp <- topTreat(tfit, coef=1, n=Inf)
basal.vs.ml <- topTreat(tfit, coef=2, n=Inf)
head(basal.vs.lp)

维恩图显示仅比较基础与仅LP(左),基础与仅ML(右)之间比较基因DE的数量,以及两个比较(中心)中DE的基因数目。 任何比较中不是DE的基因的数目标记在右下角。

  • 差异基因可视化

为了总结目测所有基因的结果,可以使用plotMD函数生成显示来自线性模型的log-FC与平均对数-CPM值拟合的均值 - 差异图,其中突出显示差异表达的基因。

plotMD(tfit, column=1, status=dt[,1],
       main=colnames(tfit)[1], 
       xlim=c(-8,13))
  • 使用Glimma生成交互式均值差分图。

log-FC与log-CPM值显示在左侧面板中,与右侧面板中选定基因的每个样品的单个值相关。 结果表也显示在这些图下方,以及搜索栏以允许用户使用可用的注释信息来查找特定的基因。

glMDPlot(tfit, coef=1, status=dt,
         main=colnames(tfit)[1],
         side.main="ENTREZID",
         counts=x$counts,
         groups=group, launch=T)
  • 热图

使用来自gplots软件包的heatmap.2函数,从基础对比LP对比度的顶部100个DE基因(按调整的p值排列)创建热图。热图将样品按细胞类型正确聚类,并将基因重新排列成具有相似表达模式的区块。从热图中,我们观察到ML和LP样品的表达对于基础和LP之间的前100个DE基因非常相似。

library(gplots)
basal.vs.lp.topgenes <- basal.vs.lp$ENTREZID[1:100]
i <- which(v$genes$ENTREZID %in% basal.vs.lp.topgenes)
mycol <- colorpanel(1000,"blue","white","red")
heatmap.2(v$E[i,], scale="row",
          labRow=v$genes$SYMBOL[i], labCol=group,
          col=mycol, trace="none", density.info="none", 
          margin=c(8,6), lhei=c(2,10), dendrogram="column")

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 寻找核心基因+子网络

    一般做完差异基因,或者使用其他方法找到想要的biomarker时,想要知道这些基因的调控网络,或者哪些基因在调控网络中处于核心位置,比较常见的方法就是wgcna...

    用户1359560
  • 文献翻译:Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in...

    信息基因的选择是基因表达研究中的重要问题。基因表达数据的小样本量和大量基因特性使选择过程复杂化。此外,所选择的信息基因可以作为基因共表达网络分析的重要输入。此外...

    用户1359560
  • 查询基因的核苷酸序列和蛋白的氨基酸序列

    (1)在pubmed gene数据库选择输入想要查询的基因,点击search即可。

    用户1359560
  • 20. Vue 过滤器 - 转化时间格式

    在上一篇中基本讲诉了Vue过滤器的基本使用,那么在后台管理系统的业务中,使用最多的一个过滤器就是时间格式的转化,下面来看看,如何处理。

    Devops海洋的渔夫
  • 微软开发了灵活的AI系统,用于文本摘要任务,优于现有模型

    对于AI来说,将段落总结成句子并不容易。这是因为它需要对文本的语义理解,这超出了大多数现有的自然语言处理模型的能力。但微软的研究人员最近证明,这并非完全不可能。

    AiTechYun
  • 【设计师必看】提高Banner点击率的15个设计技巧!

    网页Banner设计的重点是通过应用基本的设计准则,系统地创建有效的Banner广告。在这篇文章中,小编为大家整理了15条关于创建成功的网页横幅设计小建议。

    奔跑的小鹿
  • python建模库学习

    在模型开发工程中,通常的工作的流程是使用pandas对数据进行清洗和加载,然后对处理后的数据进行建模,开发模型中的其中一个重要环节是机器学习中的“特征工程”,他...

    opprash
  • 学界 | 全景照片不怕歪!Facebook 用神经网络矫正扭曲的地平线

    AI科技评论按:最近微博上的全景照片很火呀,相比各位都已经在自己的iPhone或者iPad上品鉴了多家IT公司的办公室、游玩了多个旅游胜地、享受了被小猫小狗环绕...

    AI科技评论
  • 使用dbcp作为数据池的坑

     使用sqlyog或者是navicat 执行操作。等一会不操作,下次操作第一次就会比较卡。需要等待,才可以。连接上,继续操作没问题。但是一会不操作,下次操作,又...

    凯哥Java
  • iOS开发·runtime+KVC实现多层字典模型转换(多层数据:模型嵌套模型,模型嵌套数组,数组嵌套模型)

    更重要的是,有时候在iOS面试的时候,部分面试官会不仅问你某种场景会用到什么框架,更会问你如果要你来实现这个功能,你有没有解决思路?所以,自己实现字典转模型还是...

    陈满iOS

扫码关注云+社区

领取腾讯云代金券