专栏首页尾尾部落小白的机器学习实战——向量,矩阵和数组 小白的机器学习实战——向量,矩阵和数组

小白的机器学习实战——向量,矩阵和数组 小白的机器学习实战——向量,矩阵和数组

创建矩阵

import numpy as np
# 创建矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9],
                   [10, 11, 12]])

向量

# 行向量
vector_row = np.array([1, 2, 3])
# 列向量
vector_column = np.array([[1],
                          [2],
                          [3]])

计算平均值,方差和标准偏差

# 计算均值
np.mean(matrix)
>>> 6.5
# 计算方差
np.var(matrix)
>>> 11.916666666666666
# 计算标准差
np.std(matrix)
>>> 3.4520525295346629

重塑矩阵

# 第二维可以为-1让程序自己推断,如matrix.reshape(2, -1)
matrix.reshape(2, 6)
>>> array([[ 1,  2,  3,  4,  5,  6],
       [ 7,  8,  9, 10, 11, 12]])

矩阵加减法

# 创建矩阵a
matrix_a = np.array([[1, 1, 1],
                     [1, 1, 1],
                     [1, 1, 2]])

# 创建矩阵b
matrix_b = np.array([[1, 3, 1],
                     [1, 3, 1],
                     [1, 3, 8]])

# 矩阵相加
np.add(matrix_a, matrix_b)
array([[ 2,  4,  2],
       [ 2,  4,  2],
       [ 2,  4, 10]])

# 矩阵相减
np.subtract(matrix_a, matrix_b)
array([[ 0, -2,  0],
       [ 0, -2,  0],
       [ 0, -2, -6]])

对矩阵元素进行操作

# 创建一个方法:对每个元素加10
add_100 = lambda i: i + 10

# 在对numpy的数组进行操作时,我们应该尽量避免循环操作,尽可能利用矢量化函数来避免循环。但是,直接将自定义函数应用在numpy数组之上会报错,我们需要将函数进行矢量化转换.
vectorized_add_100 = np.vectorize(add_100)

# 最后将函数应用到矩阵上
vectorized_add_100(matrix)
>>> array([[11, 12, 13],
           [14, 15, 16],
           [17, 18, 19],
           [20, 21, 22]])

创建稀疏矩阵

# 创建一个矩阵,其中零元素远远多于非零元素
matrix = np.array([[0, 0],
                   [1, 0],
                   [0, 6]])
# 由于稀疏矩阵中非零元素较少,零元素较多,因此可以采用只存储非零元素的方法来进行压缩存储。
# 另外对于很多元素为零的稀疏矩阵,仅存储非零元素可使矩阵操作效率更高,速度更快。
# python不能自动创建稀疏矩阵,所以要用scipy中特殊的命令来得到稀疏矩阵。
from scipy import sparse
matrix_sparse = sparse.csr_matrix(matrix)

描述一个矩阵

# 查看行和列
matrix.shape
>>> (4, 3)
# 查看所有元素个数(行*列)
matrix.size
>>> 12
# 查看维数
matrix.ndim
>>> 2

最大值和最小值

# 最大值
np.max(matrix)
>>> 12
# 最小值
np.min(matrix)
>>> 1
# 按列查找最大元素
np.max(matrix, axis=0)
>>> array([10, 11, 12])
# 按行查找最大元素
np.max(matrix, axis=1)
>>> array([3, 6, 9,12])

矩阵求逆

# 创建一个新矩阵
matrix_n = np.array([[1, 2],
                   [3, 4]])
# 计算逆矩阵
np.linalg.inv(matrix_n)
>>> array([[-2. ,  1. ],
       [ 1.5, -0.5]])

展平矩阵

matrix.flatten()
>>> array([1, 2, 3, 4, 5, 6, 7, 8, 9])

元素选择

# 对一个向量
vector = np.array([1, 2, 3, 4, 5, 6])
vector[1]
>>> 2
# 对于一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
matrix[1,1]
>>> 5
对于一个张量(高维矩阵)
tensor = np.array([
    [[[1, 1], [1, 1]], [[2, 2], [2, 2]]],
    [[[3, 3], [3, 3]], [[4, 4], [4, 4]]]
                  ])
tensor[1,1,1]
>>> array([4, 4])

计算矩阵点乘(对应位置相乘之后再相加)

vector_a = np.array([1,2,3])
vector_b = np.array([4,5,6])
# 方法一
np.dot(vector_a, vector_b)
>>> 32
# 方法二
vector_a @ vector_b
>>> 32

计算矩阵的行列式(The Determinant Of A Matrix)、矩阵的迹(The Trace Of A Matrix)和矩阵的秩(The Rank Of A Matrix)

matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
# 行列式:行列式(Determinant)是数学中的一个函数,将一个 n*n的矩阵A映射到一个标量,记作det(A)或|A|
np.linalg.det(matrix)
>>> -9.5161973539299405e-16

# 迹:在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。
# 先获得矩阵的对角线
matrix.diagonal()
>>> array([1, 5, 9])
# 对角线求和就是迹
matrix.diagonal().sum()
>>> 15
# 秩:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。
np.linalg.matrix_rank(matrix)
>>> 2

矢量或矩阵转置

# 创建一个矢量
vector = np.array([1, 2, 3, 4, 5, 6])
# 转置
vector.T
>>> array([1, 2, 3, 4, 5, 6])

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
# 转置
matrix.T
>>> array([[1, 4, 7],
          [2, 5, 8],
          [3, 6, 9]])

参考:https://chrisalbon.com/

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • [剑指offer] 用两个栈实现队列

    用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。

    尾尾部落
  • [剑指offer] 把字符串转换成整数

    将一个字符串转换成一个整数(实现Integer.valueOf(string)的功能,但是string不符合数字要求时返回0),要求不能使用字符串转换整数的库函...

    尾尾部落
  • [剑指offer] 顺时针打印矩阵

    输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

    尾尾部落
  • MFS搭建分布式文件系统

    L宝宝聊IT
  • 【图文教程】MongoDB云数据库Atlas的使用

    学习使用 MongoDB 官方提供的免费云数据库,初学者的学习利器,手把手图文教程。

    Dunizb
  • 机器学习之回归原理详述(一)

    本文用了从数学层面和代码层面,再结合一些通俗易懂的例子,详细地描述了回归主要涉及的原理和知识,希望对于机器学习的初学者或者有兴趣研究模型具体实现的同学带来一点帮...

    汪毅雄
  • HDU 5882 Balanced Game

    Balanced Game Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/3276...

    Angel_Kitty
  • 基于RMAN从活动数据库异机克隆(rman duplicate from active DB)

          Oracle 11g RMAN能够实现基于活动数据库进行异机克隆,从而省去需要先备份再ftp到辅助服务器的过程。这一切可以全部交给Oracle来搞定...

    Leshami
  • Spring Boot中使用@JsonComponent

    @JsonComponent 是Spring boot的核心注解,使用@JsonComponent 之后就不需要手动将Jackson的序列化和反序列化手动加入O...

    程序那些事
  • 项目莫名其妙的Unsupported Modules Detected: Compilation is not supported for following modules: MyView. ...

    个人练手demo出现如此错误也不知道什么鬼,百度后得出以下三种解决方法,操作无果:

    紫兮木溪

扫码关注云+社区

领取腾讯云代金券