首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >利用LockSupport实现互斥锁和共享锁

利用LockSupport实现互斥锁和共享锁

作者头像
LNAmp
发布2018-09-05 15:26:33
9740
发布2018-09-05 15:26:33
举报

前言

首先说说LockSupport吧,它的作用是提供一组直接block或unblock线程的方法,其底层实现利用了Unsafe(前面文章有讲过Unsafe)。LockSupport是一个非常底层的API,我们利用其可以做很多事情,本文将利用LockSupport实现互斥锁和共享锁。

Lock

在JDK中已经提供了很多种锁的实现,原生的synchronized(优先推荐使用),juc中的ReentrantLock等,本文不纠结synchronized和ReentrantLock的实现,本文只从Lock的语义出发实现两种锁。

Lock的语义

juc中对于Lock接口的定义如下:

    void lock();

    void lockInterruptibly() throws InterruptedException;

    boolean tryLock();

    boolean tryLock(long var1, TimeUnit var3) throws InterruptedException;

    void unlock();

    Condition newCondition();
  • void lock():获取锁的语义,如果没有获取到锁一直阻塞当前线程(不响应中断interrupt)
  • void lockInterruptibly() throws InterruptedException; 获取锁,但是当前线程在阻塞期间可以响应中断(后面稍微会扯一下InterruptedException)
  • boolean tryLock(); 尝试获取锁,不阻塞;获取到锁返回true,没有获取到返回false
  • boolean tryLock(long var1, TimeUnit var3) throws InterruptedException; 尝试获取锁,并尝试阻塞等待一定时间,阻塞期间可以响应中断
  • void unlock(); 释放锁;
  • Condition newCondition();在锁上新建Condition

以上的关于锁的语义稍微复杂了点,特别是相应中断部分和newCondition部分,所以这次实现上简化了Lock的语义如下:

    void lock();

    void unLock();

    boolean tryLock();

    boolean tryLock(long maxWaitInMills);

基本功能和上面保持一致,但是都不响应中断

分析锁的实现

  • Lock有可重入的语义,一个线程拥有锁之后再次调用lock应该完全没有任何问题,所以锁的实现中需要维护一个已经获取锁的线程队列;
  • Lock未成功需要阻塞当前线程,所以需要底层阻塞原语(LockSupport)等的支持,并且在有线程释放锁之后需要唤起阻塞线程进行锁的竞争,所以需要维护等待锁的线程队列
  • Lock需要维护当前锁的状态(是否可以被获取等)

互斥锁

public class MutexLock implements Lock {


    private volatile Thread threadOwnsTheLock;

    private final AtomicInteger state = new AtomicInteger(0);

    private final ConcurrentLinkedQueue<Thread> waitThreadsQueue = new ConcurrentLinkedQueue<Thread>();


    //一直等待
    public void lock() {
        tryLock(-1L);
    }

    //invoke all的语义,也可以做invokeNext
    public void unLock() {
        tryRelease(-1);
        threadOwnsTheLock = null;
        if (!waitThreadsQueue.isEmpty()) {
            for (Thread thread : waitThreadsQueue) {
                LockSupport.unpark(thread);
            }
        }
    }

    public boolean tryLock() {
        if (threadOwnsTheLock != null && (threadOwnsTheLock == Thread.currentThread())) {
            return true;
        }
        if (tryAcquire(1)) {
            threadOwnsTheLock = Thread.currentThread();
            return true;
        }

        return false;
    }

    //没有实现interrupt的语义,不能打断
    public boolean tryLock(long maxWaitInMills) {
        Thread currentThread = Thread.currentThread();
        try {
            waitThreadsQueue.add(currentThread);
            if (maxWaitInMills > 0) {
                boolean acquired = false;
                long left = maxWaitInMills * 1000L * 1000L;
                long cost = 0;
                while (true) {
                    //需要判断一次interrupt

                    if (tryAcquire(1)) {
                        threadOwnsTheLock = currentThread;
                        acquired = true;
                        break;
                    }

                    left = left - cost;
                    long mark = System.nanoTime();
                    if (left <= 0) {
                        break;
                    }
                    LockSupport.parkNanos(left);
                    cost = mark - System.nanoTime();
                }
                return acquired;
            }else {
                while (true) {
                    if (tryAcquire(1)) {
                        threadOwnsTheLock = currentThread;
                        break;
                    }
                    LockSupport.park();
                }
                return true;
            }
        } finally {
            waitThreadsQueue.remove(currentThread);
        }

    }

    protected boolean tryAcquire(int acquire) {
        return state.compareAndSet(0, 1);
    }

    protected void tryRelease(int release) {
        if (threadOwnsTheLock == null || (threadOwnsTheLock != Thread.currentThread())) {
            System.out.println("Wrong state, this thread don't own this lock.");
        }
        while (true) {
            if (state.compareAndSet(1, 0)) {
                return;
            }
        }
    }
}

以上互斥锁使用了一个AtomicInteger,利用了CAS来维持锁的状态

共享锁

public class ShareLock implements Lock {

    private volatile Set<Thread> threadsOwnsLock = Sets.newConcurrentHashSet();

    private final AtomicInteger state;

    private final ConcurrentLinkedQueue<Thread> waitThreadsQueue = new ConcurrentLinkedQueue<Thread>();

    public ShareLock(int shareNum) {
        this.state = new AtomicInteger(shareNum);
    }


    //一直等待
    public void lock() {
        tryLock(-1L);
    }

    public void unLock() {
        tryRelease(-1);
        threadsOwnsLock.remove(Thread.currentThread());
        if (!waitThreadsQueue.isEmpty()) {
            for (Thread thread : waitThreadsQueue) {
                LockSupport.unpark(thread);
            }
        }
    }

    public boolean tryLock() {
        if ( !(threadsOwnsLock.contains(Thread.currentThread()))) {
            return true;
        }
        if (tryAcquire(1)) {
            threadsOwnsLock.add(Thread.currentThread());
            return true;
        }

        return false;
    }

    public boolean tryLock(long maxWaitInMills) {


        Thread currentThread = Thread.currentThread();
        try {
            waitThreadsQueue.add(currentThread);
            if (maxWaitInMills > 0) {
                boolean acquired = false;
                long left = TimeUnit.MILLISECONDS.toNanos(maxWaitInMills);
                long cost = 0;
                while (true) {
                    if (tryAcquire(1)) {
                        threadsOwnsLock.add(Thread.currentThread());
                        acquired = true;
                        break;
                    }

                    left = left - cost;
                    long mark = System.nanoTime();
                    if (left <= 0) {
                        break;
                    }
                    LockSupport.parkNanos(left);
                    cost = mark - System.nanoTime(); //有可能是被唤醒重新去获取锁,没获取到还得继续等待剩下的时间(并不精确)
                }
                return acquired;
            }else {
                while (true) {
                    if (tryAcquire(1)) {
                        threadsOwnsLock.add(Thread.currentThread());
                        break;
                    }
                    LockSupport.park();
                }
                return true;
            }
        } finally {
            waitThreadsQueue.remove(currentThread);
        }

    }

    protected boolean tryAcquire(int acquire) {
        if (state.getAndDecrement() > 0) {
            return true;
        } else {
            state.getAndIncrement();//恢复回来
            return false;
        }
    }

    protected void tryRelease(int release) {
        if (!(threadsOwnsLock.contains(Thread.currentThread()))) {
            System.out.println("Wrong state, this thread don't own this lock.");
        }
        state.getAndIncrement();
    }
}

总结

以上利用了LockSupport来实现了互斥锁和共享锁,但是实现中并没有完成中断响应。后面应该会有文章单独说明关于InterruptedException的注意点。下篇文章将讲述如何利用LockSupport实现Future语义

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016.12.07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • Lock
    • Lock的语义
      • 分析锁的实现
      • 互斥锁
        • 共享锁
          • 总结
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档