前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习: RPN (区域候选网络)

深度学习: RPN (区域候选网络)

作者头像
JNingWei
发布2018-09-27 15:52:11
6.6K0
发布2018-09-27 15:52:11
举报
文章被收录于专栏:JNing的专栏JNing的专栏

Overview

RPN的本质是 “ 基于滑窗的无类别obejct检测器 ” :

这里写图片描述
这里写图片描述

RPN所在的位置:

这里写图片描述
这里写图片描述

Note

  • 只有在train时,cls+reg才能得到强监督信息(来源于ground truth)。即ground truth会告诉cls+reg结构,哪些才是真的前景,从而引导cls+reg结构学得正确区分前后景的能力;在reference阶段,就要靠cls+reg自力更生了。
  • 在train阶段,会输出约2000个proposal,但只会抽取其中256个proposal来训练RPN的cls+reg结构;到了reference阶段,则直接输出最高score的300个proposal。此时由于没有了监督信息,所有RPN**并不知道这些proposal是否为前景**,整个过程只是惯性地推送一波无tag的proposal给后面的Fast R-CNN。
  • RPN的运用使得region proposal的额外开销就只有一个两层网络

放大之后是这样:

这里写图片描述
这里写图片描述

庖丁解牛

RPN由以下三部分构成:

  1. RPN头部 ,通过以下结构生成 anchor(其实就是一堆有编号有坐标的bbox):
这里写图片描述
这里写图片描述

论文中的这幅插图对应的就是 RPN头部

这里写图片描述
这里写图片描述

(曾经以为这张图就是整个RPN,于是百思不得其解,走了不少弯路。。。)

  1. RPN中部分类分支(cls)边框回归分支(bbox reg) 分别对这堆anchor进行各种计算:
这里写图片描述
这里写图片描述

Note: two stage型的检测算法在RPN 之后 还会进行 再一次分类任务边框回归任务,以进一步提升检测精度。

  1. RPN末端,通过对 两个分支的结果进行汇总,来实现对anchor的 初步筛除(先剔除越界的anchor,再根据cls结果通过NMS算法去重)和 初步偏移(根据bbox reg结果),此时输出的都改头换面叫 Proposal 了:
这里写图片描述
这里写图片描述

后话

RPN之后,proposal 成为 RoI (感兴趣区域) ,被输入 RoIPooling 或 RoIAlign 中进行 size上的归一化。当然,这些都是 RPN网络 之后 的操作了,严格来说并 不属于 RPN 的范围 了。

图中 绿框内RPN红圈内RoI 以及其对应的 Pooling 操作

这里写图片描述
这里写图片描述

note

但是如果只在最后一层 feature map 上映射回原图像,且初始产生的anchor被限定了尺寸下限,那么低于最小anchor尺寸的小目标虽然被anchor圈入,在后面的过程中依然容易被漏检。

但是FPN的出现,大大降低了小目标的漏检率,使得RPN如虎添翼。

Source Code

作者的源码

#========= RPN ============

layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5"
  top: "rpn/output"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 256
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_relu/3x3"
  type: "ReLU"
  bottom: "rpn/output"
  top: "rpn/output"
}
layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 18   # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
   bottom: "rpn_cls_score"
   top: "rpn_cls_score_reshape"
   name: "rpn_cls_score_reshape"
   type: "Reshape"
   reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
}
layer {
  name: 'rpn-data'
  type: 'Python'
  bottom: 'rpn_cls_score'
  bottom: 'gt_boxes'
  bottom: 'im_info'
  bottom: 'data'
  top: 'rpn_labels'
  top: 'rpn_bbox_targets'
  top: 'rpn_bbox_inside_weights'
  top: 'rpn_bbox_outside_weights'
  python_param {
    module: 'rpn.anchor_target_layer'
    layer: 'AnchorTargetLayer'
    param_str: "'feat_stride': 16"
  }
}
layer {
  name: "rpn_loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "rpn_cls_score_reshape"
  bottom: "rpn_labels"
  propagate_down: 1
  propagate_down: 0
  top: "rpn_cls_loss"
  loss_weight: 1
  loss_param {
    ignore_label: -1
    normalize: true
  }
}
layer {
  name: "rpn_loss_bbox"
  type: "SmoothL1Loss"
  bottom: "rpn_bbox_pred"
  bottom: "rpn_bbox_targets"
  bottom: 'rpn_bbox_inside_weights'
  bottom: 'rpn_bbox_outside_weights'
  top: "rpn_loss_bbox"
  loss_weight: 1
  smooth_l1_loss_param { sigma: 3.0 }
}

#========= RoI Proposal ============

layer {
  name: "rpn_cls_prob"
  type: "Softmax"
  bottom: "rpn_cls_score_reshape"
  top: "rpn_cls_prob"
}
layer {
  name: 'rpn_cls_prob_reshape'
  type: 'Reshape'
  bottom: 'rpn_cls_prob'
  top: 'rpn_cls_prob_reshape'
  reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
}
layer {
  name: 'proposal'
  type: 'Python'
  bottom: 'rpn_cls_prob_reshape'
  bottom: 'rpn_bbox_pred'
  bottom: 'im_info'
  top: 'rpn_rois'
#  top: 'rpn_scores'
  python_param {
    module: 'rpn.proposal_layer'
    layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
  }
}
layer {
  name: 'roi-data'
  type: 'Python'
  bottom: 'rpn_rois'
  bottom: 'gt_boxes'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'rpn.proposal_target_layer'
    layer: 'ProposalTargetLayer'
    param_str: "'num_classes': 21"
  }
}

#========= RCNN ============

layer {
  name: "roi_pool_conv5"
  type: "ROIPooling"
  bottom: "conv5"
  bottom: "rois"
  top: "roi_pool_conv5"
  roi_pooling_param {
    pooled_w: 6
    pooled_h: 6
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "roi_pool_conv5"
  top: "fc6"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
    scale_train: false
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
    scale_train: false
  }
}
layer {
  name: "cls_score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred"
  type: "InnerProduct"
  bottom: "fc7"
  top: "bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "cls_score"
  bottom: "labels"
  propagate_down: 1
  propagate_down: 0
  top: "cls_loss"
  loss_weight: 1
  loss_param {
    ignore_label: -1
    normalize: true
  }
}
layer {
  name: "loss_bbox"
  type: "SmoothL1Loss"
  bottom: "bbox_pred"
  bottom: "bbox_targets"
  bottom: 'bbox_inside_weights'
  bottom: 'bbox_outside_weights'
  top: "bbox_loss"
  loss_weight: 1
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017年12月19日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Overview
  • 庖丁解牛
  • 后话
  • note
  • Source Code
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档