专栏首页hadoop学习大数据hadoop入门之hadoop家族详解
原创

大数据hadoop入门之hadoop家族详解

大数据hadoop入门之hadoop家族详解

大数据这个词也许几年前你听着还会觉得陌生,但我相信你现在听到hadoop这个词的时候你应该都会觉得“熟悉”!越来越发现身边从事hadoop开发或者是正在学习hadoop的人变多了。作为一个hadoop入门级的新手,你会觉得哪些地方很难呢?运行环境的搭建恐怕就已经足够让新手头疼。如果每一个发行版hadoop都可以做到像大快DKHadoop那样把各种环境搭建集成到一起,一次安装搞定所有,那对于新手来说将是件多么美妙的事情!

闲话扯得稍微多了点,回归整体。这篇准备给大家hadoop新入门的朋友分享一些hadoop的基础知识——hadoop家族产品。通过对hadoop家族产品的认识,进一步帮助大家学习好hadoop!同时,也欢迎大家提出宝贵意见!

一、Hadoop定义

Hadoop是一个大家族,是一个开源的生态系统,是一个分布式运行系统,是基于Java编程语言的架构。不过它最高明的技术还是HDFS和MapReduce,使得它可以分布式处理海量数据。

二、Hadoop产品

HDFS(分布式文件系统):

它与现存的文件系统不同的特性有很多,比如高度容错(即使中途出错,也能继续运行),支持多媒体数据和流媒体数据访问,高效率访问大型数据集合,数据保持严谨一致,部署成本降低,部署效率提高等,如图是HDFS的基础架构。

MapReduce/Spark/Storm(并行计算架构):

1、数据处理方式来说分离线计算和在线计算:

角色

描述

MapReduce

MapReduce常用于离线的复杂的大数据计算

Storm

Storm用于在线的实时的大数据计算,Storm的实时主要是一条一条数据处理;

Spark

可以用于离线的也可用于在线的实时的大数据计算,Spark的实时主要是处理一个个时间区域的数据,所以说Spark比较灵活。

2、数据存储位置来说分磁盘计算和内存计算:

角色

描述

MapReduce

数据存在磁盘中

Spark和Strom

数据存在内存中

Pig/Hive(Hadoop编程):

角色

描述

Pig

是一种高级编程语言,在处理半结构化数据上拥有非常高的性能,可以帮助我们缩短开发周期。

Hive

是数据分析查询工具,尤其在使用类SQL查询分析时显示出极高的性能。可以在分分钟完成ETL要一晚上才能完成的事情,这就是优势,占了先机!

HBase/Sqoop/Flume(数据导入与导出):

角色

描述

HBase

是运行在HDFS架构上的列存储数据库,并且已经与Pig/Hive很好地集成。通过Java API可以近无缝地使用HBase。

Sqoop

设计的目的是方便从传统数据库导入数据到Hadoop数据集合(HDFS/Hive)。

Flume

设计的目的是便捷地从日志文件系统直接把数据导入到Hadoop数据集合(HDFS)中。

以上这些数据转移工具都极大地方便了使用的人,提高了工作效率,把精力专注在业务分析上。

ZooKeeper/Oozie(系统管理架构):

角色

描述

ZooKeeper

是一个系统管理协调架构,用于管理分布式架构的基本配置。它提供了很多接口,使得配置管理任务简单化。

Oozie

Oozie服务是用于管理工作流。用于调度不同工作流,使得每个工作都有始有终。这些架构帮助我们轻量化地管理大数据分布式计算架构。

Ambari/Whirr(系统部署管理):

角色

描述

Ambari

帮助相关人员快捷地部署搭建整个大数据分析架构,并且实时监控系统的运行状况。

Whirr

Whirr的主要作用是帮助快速地进行云计算开发。

Mahout(机器学习):

Mahout旨在帮助我们快速地完成高智商的系统。其中已经实现了部分机器学习的逻辑。这个架构可以让我们快速地集成更多机器学习的智能。

P

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 大数据平台开发公司有哪些?

    大数据、区块链可以说近几年互联网非常火爆的风口了,发展真可谓是蓬勃向上。围绕大数据进行的行业变革、创新已经不仅仅是趋势,而是真实在进行中。大数据技术对各行业的重...

    用户3392176
  • 从零开始学习hadoop之发行版选择

    经常会看到这样的问题:零基础学习hadoop难不难?有的人回答说:零基础学习hadoop,没有想象的那么难,也没有想象的那么容易。看到这样的答案不免觉得有些尴尬...

    用户3392176
  • 什么是大数据技术架构

    大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装...

    用户3392176
  • 流动的数据——使用 RxJS 构造复杂单页应用的数据逻辑

    我们经常见到这么一些场景: 微博的列表页面; 各类协同工具的任务看板,比如 Teambition。 ? 这类场景的一个共同特点是: 由若干个小方块构成; 每个小...

    CSDN技术头条
  • 云计算专题:(一)带你走近云计算

    数字经济为中国产业转型带来了巨大的机遇,我国数字经济规模已达27.2万亿,占当年GDP将近1/3,数字经济这几年表现出远高于GDP的增长率,复合增长率达18.9...

    传知贝贝
  • 大数据领域33个预测,开启未知的2016

    大数据文摘
  • 【关注】2016年大数据领域预测:Spark淘汰MapReduce,拯救Hadoop

    2016 年大数据领域会发生什么情况?考虑到如今在深层神经网络和规范性分析方面取得的进展,你可能觉得这个问题很好回答。而实际上,来自业界的大数据预测大不相同,本...

    小莹莹
  • 前沿趋势│2016年大数据领域的33个预测

    2016年大数据领域会发生什么情况?考虑到如今在深层神经网络和规范性分析方面取得的进展,你可能觉得这个问题很好回答。而实际上,来自业界的大数据预测大不相同,本文...

    华章科技
  • 2016年大数据在金融领域的10大趋势

    大数据文摘
  • 2016年最值得关注的大数据领域33大预测

    有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 2016年大数据领域会发生什么情况?考虑到如今在深层神经网络和规范性分析方面...

    小莹莹

扫码关注云+社区

领取腾讯云代金券