俄罗斯研究人员利用神经网络使金属3D打印更加高效

编译:chux

出品:ATYUN订阅号

3D打印机需要使用数学模型对定位和控制算法进行微调,以达到最佳性能。这是一个漫长而艰巨的过程,可能需要数周才能设置打印参数。即便如此,仍然存在打印错误的可能性。

为了克服这些问题,彼得大圣彼得堡理工大学(SPbPU)的轻质材料和结构实验室的科学家们开发了一种用于金属3D打印机的神经网络。

无论是采用协作机器人,使用AI的3D打印机,配备思维功能的软件,还是启用智能工厂,工业和科学家都正在将AI带到制造业。目前,科学家们还在探索神经网络,使AI在3D打印方面发挥作用。

使用神经网络,计算机可以开发图像识别能力等功能。而3D打印也有助于神经网络的发展。如先前的报道,科学家们使用3D打印来构建神经网络。

在最新的研究中,SPbPU的研究人员开发了用于金属3D打印的神经网络,这将有可能使3D打印更快,更高效。

处理3D打印项目对于SPbPU来说并不新鲜。如先前报道,SPbPU的工程师创造了一个带有3D打印组件的电动引擎。

现在,SPbPU团队正在开发一个神经网络,可以从之前手动输入的数据中学习,使3D打印更快,无需对不同结构进行数学建模。

此外,神经网络还在印刷期间进行调整以检测和修正缺陷,劳伦斯利弗莫尔国家实验室也使用神经网络解决了这个问题。

用于3D打印的SPbPU神经网络是用MATLAB,数字计算软件和编程语言开发的。

SPbPU团队使用新的神经网络,开发了印刷模式来制造船舶桅顶。SPbPU科学家正在进一步测试开发的神经网络。到目前为止,他们已经测试了激光熔化的质量,制造零件的质量以及焊接工艺的稳定性。

轻量级材料与结构SPbPU实验室主任Oleg Panchenko表示,下一步是创建一个基于神经网络的在线系统,自动输入数据集和输出参数,这样系统将不断学习。新系统将提高零件的质量,并提高参数开发的速度,以进一步制造。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-11-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

资源 | 免费乳腺癌X光片检测:网友50块GPU搭建AI医疗图像早筛平台

去年的时候,我一个在芝加哥比我小几级的南京大学校友去世了。乳腺癌,发现得晚了,才 34 岁,留下了一个 4 岁的孩子。非常可惜。想想能不能做点什么事情可以帮助大...

16900
来自专栏企鹅号快讯

总结:如何操作各大品牌工业机器人——认知篇

在这几年,各大工业机器人制造商,目前都热衷与人机协作,ABB的“玉米”,FANUC的“绿手臂”,KUKA的“伊娃”等等,在人机协作走的比较前的也就数UR了,我们...

36560
来自专栏新智元

DeepMind 创始人 Cell 评论:通用人工智需要怎样的学习系统?

【新智元导读】谷歌 DeepMind 创始人 Demis Hassabis 等人近日在细胞出版社期刊发表评论,拓展辅助学习系统(CLS)理论,为研究通用人工智能...

38330
来自专栏大数据文摘

资源 | 100+个自然语言处理数据集大放送,再不愁找不到数据!

310100
来自专栏大数据文摘

2016年2季度爆文精选 TOP10

22280
来自专栏AI研习社

从深度学习到机器人控制,2017 人工智能新开发工具盘点

2017 年,在深度学习技术的加持下,CV、NLP、数据分析等领域全面开花,同时大量新开发工具和开源软件的涌现,降低了人工智能开发的门槛,加速了深度学习的普及。...

38560
来自专栏AI研习社

PyTorch 到底好用在哪里?

提问内容如下: 之前非常熟悉 Tensorflow,后来都说 PyTorch 简单易上手,自己就去试了试。 PyTorch 连最基本的 maximum, min...

1K40
来自专栏新智元

改名了?NIPS网站出现NeurIPS,官网新地址现身!

登录原先NIPS官网,你会发现会议名称默默地改为了“NeurIPS”,现在,此事已经在Twitter上引发一片热议。

13950
来自专栏CDA数据分析师

学会10种方法,用Python轻松实现数据可视化

引言 艺术之美根植于其所传达的信息。有时候,现实并非我们所看到或感知到的。达芬奇(Da Vinci)和毕加索(Picasso)等艺术家都通过其具有特定主题的非...

20250
来自专栏数据的力量

如何选择合适的数据图表?

16840

扫码关注云+社区

领取腾讯云代金券