【免费线上实践】动手训练模型系列:SVM径向基核函数的参数选择

本模型实现对512*512像素图形样本中所有像素的2分类问题;红色或蓝色的样本点(每个样本包含坐标(x,y)值)坐落在对应颜色的区域内则样本正确分类,反之分类错误

(进入小程序 动手训模型)

模型训练小结:

径向基核函数(RBF)是最为常用的非线性分类核函数.而相比于线性核函数,工程项目中使用RBF需要花费更长时间进行调参。

当参数gamma非常小时,模型会过于拘束,不能捕捉到数据的复杂性,其表现会更近似于超平面分割的线性模型。

惩罚因子可以理解为在误分类样本和分界面简单性之间进行权衡。低的惩罚因子倾向于保持简单的线性分类状态而忽略错误分类,而高的惩罚因子则会刺激模型提高自身复杂度。

所以当任务的特征复杂度提高,RBF核函数的伽马值与惩罚因子均需调整提高。

原文发布于微信公众号 - SIGAI(SIGAICN)

原文发表时间:2018-11-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

博客 | 基于深度学习的目标检测算法综述(二)

目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基...

4184
来自专栏老秦求学

[Deep-Learning-with-Python]机器学习基础

二分类、多分类以及回归问题都属于监督学习--目标是学习训练输入和对应标签之间的关系。 监督学习只是机器学习的冰山一角。机器学习主要分为4类:监督学习、非监督学...

1033
来自专栏专知

【干货】对于回归问题,我们该怎样选择合适的机器学习算法

本文分别介绍:线性回归和多项式回归、神经网络、决策树和决策森林,并分别列出了其各自优缺点,相信有助于指导我们在特定工作中选择合适的算法。

4577
来自专栏机器学习算法工程师

【随笔记录】1*1卷积核的作用

之前只是知道1x1的卷积核用在Inception模块中具有降维的作用,并没有认真的思考它是怎么样实现降维的,以及它还有哪些作用。于是查阅了一些资料,并记录了它...

1805
来自专栏深度学习

神经网络性能调优方案

神经网络性能调优主要方法 (1)数据增广 (2)图像预处理 (3)网络初始化 (4)训练过程中的技巧 (5)激活函数的选择 (6)不同正则化方法 (...

3888
来自专栏人工智能头条

从CNN视角看在自然语言处理上的应用

3463
来自专栏大数据文摘

论文Express | 谷歌大脑:基于元学习的无监督学习更新规则

1903
来自专栏AI科技评论

干货 | 基于深度学习的目标检测算法综述(二)

目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基...

2892
来自专栏磐创AI技术团队的专栏

新手入门机器学习十大算法

【磐创AI导读】:对于想要了解机器学习的新手,本文为大家总结了数据科学家最经常使用的十大机器学习算法来帮助大家快速入门。如果喜欢我们的文章,欢迎点赞、评论、转发...

851
来自专栏机器之心

入门 | 区分识别机器学习中的分类与回归

3115

扫码关注云+社区

领取腾讯云代金券