前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Ubuntu 16.04 使用docker资料汇总与应用docker安装caffe并使用Classifier(ros kinetic+usb_cam+caffe)

Ubuntu 16.04 使用docker资料汇总与应用docker安装caffe并使用Classifier(ros kinetic+usb_cam+caffe)

作者头像
zhangrelay
发布2019-01-23 11:34:53
1.1K0
发布2019-01-23 11:34:53
举报
文章被收录于专栏:机器人课程与技术

Docker是开源的应用容器引擎。若想简单了解一下,可以参考百度百科词条Docker。好像只支持64位系统。

Docker官网:https://www.docker.com/

Docker — 从入门到实践:https://yeasy.gitbooks.io/docker_practice/content/

Pdf版下载:http://download.csdn.net/detail/zhangrelay/9743400

caffe官网:http://caffe.berkeleyvision.org/installation.html

caffe_docker:https://github.com/BVLC/caffe/tree/master/docker

然后参考这篇博客就可以了:http://blog.csdn.net/sysushui/article/details/54585788

看右图数据,准确识别出是磁罗盘(>0.8)

如: docker search caffe

代码语言:javascript
复制
$ docker search caffe
NAME                                  DESCRIPTION                                     STARS     OFFICIAL   AUTOMATED
kaixhin/caffe                         Ubuntu Core 14.04 + Caffe.                      33                   [OK]
kaixhin/cuda-caffe                    Ubuntu Core 14.04 + CUDA + Caffe.               30                   [OK]
neowaylabs/caffe-cpu                  Caffe CPU based on:  https://hub.docker.co...   4                    [OK]
kaixhin/caffe-deps                    `kaixhin/caffe` dependencies.                   1                    [OK]
mbartoli/caffe                        Caffe, CPU-only                                 1                    [OK]
drunkar/cuda-caffe-anaconda-chainer   cuda-caffe-anaconda-chainer                     1                    [OK]
kaixhin/cuda-caffe-deps               `kaixhin/cuda-caffe` dependencies.              0                    [OK]
mtngld/caffe-gpu                      Ubuntu + caffe (gpu ready)                      0                    [OK]
nitnelave/caffe                       Master branch of BVLC/caffe, on CentOS7 wi...   0                    [OK]
bvlc/caffe                            Official Caffe images                           0                    [OK]
ruimashita/caffe-gpu                  ubuntu 14.04 cuda 7 (NVIDIA driver version...   0                    [OK]
ruimashita/caffe-cpu-with-models      ubuntu 14.04 caffe  bvlc_reference_caffene...   0                    [OK]
elezar/caffe                          Caffe Docker Images                             0                    [OK]
ruimashita/caffe-gpu-with-models      ubuntu 14.04 cuda 7.0 caffe  bvlc_referenc...   0                    [OK]
floydhub/caffe                        Caffe docker image                              0                    [OK]
namikister/caffe                      Caffe with CUDA 8.0                             0                    [OK]
tingtinglu/caffe                      caffe                                           0                    [OK]
djpetti/caffe                         A simple container with Caffe, CUDA, and C...   0                    [OK]
flyingmouse/caffe                     Caffe is a deep learning framework made wi...   0                    [OK]
ruimashita/caffe-cpu                  ubuntu 14.04 caffe                              0                    [OK]
suyongsun/caffe-gpu                   Caffe image with gpu mode.                      0                    [OK]
haoyangz/caffe-cnn                    caffe-cnn                                       0                    [OK]
2breakfast/caffe-sshd                 installed sshd server on nvidia/caffe           0                    [OK]
chakkritte/docker-caffe               Docker caffe                                    0                    [OK]
ederrm/caffe                          Caffe http://caffe.berkeleyvision.org setup!    0                    [OK]
relaybot@relaybot-desktop:~$ 

选择安装即可,caffe安装CPU版本还是比较容易的。

安装完毕测试,这是在ros kinetic版本测试,和ros indigo一样。

具体请参考:

ROS + Caffe 机器人操作系统框架和深度学习框架笔记 (機器人控制與人工智能)

http://blog.csdn.net/zhangrelay/article/details/54669922

$ roscore ... logging to /home/relaybot/.ros/log/f214a97a-e0b1-11e6-833d-70f1a1ca7552/roslaunch-relaybot-desktop-32381.log Checking log directory for disk usage. This may take awhile. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://relaybot-desktop:44408/ ros_comm version 1.12.6 SUMMARY ======== PARAMETERS  * /rosdistro: kinetic  * /rosversion: 1.12.6 NODES auto-starting new master process[master]: started with pid [32411] ROS_MASTER_URI=http://relaybot-desktop:11311/ setting /run_id to f214a97a-e0b1-11e6-833d-70f1a1ca7552 process[rosout-1]: started with pid [32424] started core service [/rosout]

$ rosrun uvc_camera uvc_camera_node [ INFO] [1485096579.984543774]: using default calibration URL [ INFO] [1485096579.984671839]: camera calibration URL: file:///home/relaybot/.ros/camera_info/camera.yaml [ INFO] [1485096579.984939036]: Unable to open camera calibration file [/home/relaybot/.ros/camera_info/camera.yaml] [ WARN] [1485096579.984987494]: Camera calibration file /home/relaybot/.ros/camera_info/camera.yaml not found. opening /dev/video0 pixfmt 0 = 'YUYV' desc = 'YUYV 4:2:2'   discrete: 640x480:   1/30 1/15   discrete: 352x288:   1/30 1/15   discrete: 320x240:   1/30 1/15   discrete: 176x144:   1/30 1/15   discrete: 160x120:   1/30 1/15   discrete: 1280x800:   2/15   discrete: 1280x1024:   2/15   int (Brightness, 0, id = 980900): -64 to 64 (1)   int (Contrast, 0, id = 980901): 0 to 64 (1)   int (Saturation, 0, id = 980902): 0 to 128 (1)   int (Hue, 0, id = 980903): -40 to 40 (1)   bool (White Balance Temperature, Auto, 0, id = 98090c): 0 to 1 (1)   int (Gamma, 0, id = 980910): 72 to 500 (1)   menu (Power Line Frequency, 0, id = 980918): 0 to 2 (1)     0: Disabled     1: 50 Hz     2: 60 Hz   int (Sharpness, 0, id = 98091b): 0 to 6 (1)   int (Backlight Compensation, 0, id = 98091c): 0 to 2 (1) select timeout in grab ^Crelaybot@relaybot-desktop:~$ rosrun uvc_camera uvc_camera_node topic:=/camera/b/image_raw [ INFO] [1485096761.665718381]: using default calibration URL [ INFO] [1485096761.665859706]: camera calibration URL: file:///home/relaybot/.ros/camera_info/camera.yaml [ INFO] [1485096761.665944994]: Unable to open camera calibration file [/home/relaybot/.ros/camera_info/camera.yaml] [ WARN] [1485096761.665980436]: Camera calibration file /home/relaybot/.ros/camera_info/camera.yaml not found. opening /dev/video0 pixfmt 0 = 'YUYV' desc = 'YUYV 4:2:2'   discrete: 640x480:   1/30 1/15   discrete: 352x288:   1/30 1/15   discrete: 320x240:   1/30 1/15   discrete: 176x144:   1/30 1/15   discrete: 160x120:   1/30 1/15   discrete: 1280x800:   2/15   discrete: 1280x1024:   2/15   int (Brightness, 0, id = 980900): -64 to 64 (1)   int (Contrast, 0, id = 980901): 0 to 64 (1)   int (Saturation, 0, id = 980902): 0 to 128 (1)   int (Hue, 0, id = 980903): -40 to 40 (1)   bool (White Balance Temperature, Auto, 0, id = 98090c): 0 to 1 (1)   int (Gamma, 0, id = 980910): 72 to 500 (1)   menu (Power Line Frequency, 0, id = 980918): 0 to 2 (1)     0: Disabled     1: 50 Hz     2: 60 Hz   int (Sharpness, 0, id = 98091b): 0 to 6 (1)   int (Backlight Compensation, 0, id = 98091c): 0 to 2 (1) select timeout in grab

rosrun topic_tools transform /image_raw /camera/rgb/image_raw sensor_msgs/Image 'm'

$ rosrun ros_caffe ros_caffe_test

WARNING: Logging before InitGoogleLogging() is written to STDERR

I0122 23:02:21.915738  2968 upgrade_proto.cpp:67] Attempting to upgrade input file specified using deprecated input fields: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/deploy.prototxt

I0122 23:02:21.915875  2968 upgrade_proto.cpp:70] Successfully upgraded file specified using deprecated input fields.

W0122 23:02:21.915894  2968 upgrade_proto.cpp:72] Note that future Caffe releases will only support input layers and not input fields.

I0122 23:02:21.916246  2968 net.cpp:53] Initializing net from parameters:

name: "CaffeNet"

state {

  phase: TEST

  level: 0

}

layer {

  name: "input"

  type: "Input"

  top: "data"

  input_param {

    shape {

      dim: 10

      dim: 3

      dim: 227

      dim: 227

    }

  }

}

layer {

  name: "conv1"

  type: "Convolution"

  bottom: "data"

  top: "conv1"

  convolution_param {

    num_output: 96

    kernel_size: 11

    stride: 4

  }

}

layer {

  name: "relu1"

  type: "ReLU"

  bottom: "conv1"

  top: "conv1"

}

layer {

  name: "pool1"

  type: "Pooling"

  bottom: "conv1"

  top: "pool1"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "norm1"

  type: "LRN"

  bottom: "pool1"

  top: "norm1"

  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75

  }

}

layer {

  name: "conv2"

  type: "Convolution"

  bottom: "norm1"

  top: "conv2"

  convolution_param {

    num_output: 256

    pad: 2

    kernel_size: 5

    group: 2

  }

}

layer {

  name: "relu2"

  type: "ReLU"

  bottom: "conv2"

  top: "conv2"

}

layer {

  name: "pool2"

  type: "Pooling"

  bottom: "conv2"

  top: "pool2"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "norm2"

  type: "LRN"

  bottom: "pool2"

  top: "norm2"

  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75

  }

}

layer {

  name: "conv3"

  type: "Convolution"

  bottom: "norm2"

  top: "conv3"

  convolution_param {

    num_output: 384

    pad: 1

    kernel_size: 3

  }

}

layer {

  name: "relu3"

  type: "ReLU"

  bottom: "conv3"

  top: "conv3"

}

layer {

  name: "conv4"

  type: "Convolution"

  bottom: "conv3"

  top: "conv4"

  convolution_param {

    num_output: 384

    pad: 1

    kernel_size: 3

    group: 2

  }

}

layer {

  name: "relu4"

  type: "ReLU"

  bottom: "conv4"

  top: "conv4"

}

layer {

  name: "conv5"

  type: "Convolution"

  bottom: "conv4"

  top: "conv5"

  convolution_param {

    num_output: 256

    pad: 1

    kernel_size: 3

    group: 2

  }

}

layer {

  name: "relu5"

  type: "ReLU"

  bottom: "conv5"

  top: "conv5"

}

layer {

  name: "pool5"

  type: "Pooling"

  bottom: "conv5"

  top: "pool5"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "fc6"

  type: "InnerProduct"

  bottom: "pool5"

  top: "fc6"

  inner_product_param {

    num_output: 4096

  }

}

layer {

  name: "relu6"

  type: "ReLU"

  bottom: "fc6"

  top: "fc6"

}

layer {

  name: "drop6"

  type: "Dropout"

  bottom: "fc6"

  top: "fc6"

  dropout_param {

    dropout_ratio: 0.5

  }

}

layer {

  name: "fc7"

  type: "InnerProduct"

  bottom: "fc6"

  top: "fc7"

  inner_product_param {

    num_output: 4096

  }

}

layer {

  name: "relu7"

  type: "ReLU"

  bottom: "fc7"

  top: "fc7"

}

layer {

  name: "drop7"

  type: "Dropout"

  bottom: "fc7"

  top: "fc7"

  dropout_param {

    dropout_ratio: 0.5

  }

}

layer {

  name: "fc8"

  type: "InnerProduct"

  bottom: "fc7"

  top: "fc8"

  inner_product_param {

    num_output: 1000

  }

}

layer {

  name: "prob"

  type: "Softmax"

  bottom: "fc8"

  top: "prob"

}

I0122 23:02:21.916574  2968 layer_factory.hpp:77] Creating layer input

I0122 23:02:21.916613  2968 net.cpp:86] Creating Layer input

I0122 23:02:21.916638  2968 net.cpp:382] input -> data

I0122 23:02:21.931437  2968 net.cpp:124] Setting up input

I0122 23:02:21.939075  2968 net.cpp:131] Top shape: 10 3 227 227 (1545870)

I0122 23:02:21.939122  2968 net.cpp:139] Memory required for data: 6183480

I0122 23:02:21.939157  2968 layer_factory.hpp:77] Creating layer conv1

I0122 23:02:21.939210  2968 net.cpp:86] Creating Layer conv1

I0122 23:02:21.939235  2968 net.cpp:408] conv1 <- data

I0122 23:02:21.939278  2968 net.cpp:382] conv1 -> conv1

I0122 23:02:21.939563  2968 net.cpp:124] Setting up conv1

I0122 23:02:21.939604  2968 net.cpp:131] Top shape: 10 96 55 55 (2904000)

I0122 23:02:21.939618  2968 net.cpp:139] Memory required for data: 17799480

I0122 23:02:21.939685  2968 layer_factory.hpp:77] Creating layer relu1

I0122 23:02:21.939714  2968 net.cpp:86] Creating Layer relu1

I0122 23:02:21.939730  2968 net.cpp:408] relu1 <- conv1

I0122 23:02:21.939752  2968 net.cpp:369] relu1 -> conv1 (in-place)

I0122 23:02:21.939781  2968 net.cpp:124] Setting up relu1

I0122 23:02:21.939802  2968 net.cpp:131] Top shape: 10 96 55 55 (2904000)

I0122 23:02:21.939817  2968 net.cpp:139] Memory required for data: 29415480

I0122 23:02:21.939832  2968 layer_factory.hpp:77] Creating layer pool1

I0122 23:02:21.939857  2968 net.cpp:86] Creating Layer pool1

I0122 23:02:21.939868  2968 net.cpp:408] pool1 <- conv1

I0122 23:02:21.939887  2968 net.cpp:382] pool1 -> pool1

I0122 23:02:21.939947  2968 net.cpp:124] Setting up pool1

I0122 23:02:21.939967  2968 net.cpp:131] Top shape: 10 96 27 27 (699840)

I0122 23:02:21.939980  2968 net.cpp:139] Memory required for data: 32214840

I0122 23:02:21.939992  2968 layer_factory.hpp:77] Creating layer norm1

I0122 23:02:21.940014  2968 net.cpp:86] Creating Layer norm1

I0122 23:02:21.940027  2968 net.cpp:408] norm1 <- pool1

I0122 23:02:21.940045  2968 net.cpp:382] norm1 -> norm1

I0122 23:02:21.940075  2968 net.cpp:124] Setting up norm1

I0122 23:02:21.940093  2968 net.cpp:131] Top shape: 10 96 27 27 (699840)

I0122 23:02:21.940104  2968 net.cpp:139] Memory required for data: 35014200

I0122 23:02:21.940116  2968 layer_factory.hpp:77] Creating layer conv2

I0122 23:02:21.940137  2968 net.cpp:86] Creating Layer conv2

I0122 23:02:21.940152  2968 net.cpp:408] conv2 <- norm1

I0122 23:02:21.940171  2968 net.cpp:382] conv2 -> conv2

I0122 23:02:21.940996  2968 net.cpp:124] Setting up conv2

I0122 23:02:21.941033  2968 net.cpp:131] Top shape: 10 256 27 27 (1866240)

I0122 23:02:21.941045  2968 net.cpp:139] Memory required for data: 42479160

I0122 23:02:21.941121  2968 layer_factory.hpp:77] Creating layer relu2

I0122 23:02:21.941144  2968 net.cpp:86] Creating Layer relu2

I0122 23:02:21.941157  2968 net.cpp:408] relu2 <- conv2

I0122 23:02:21.941174  2968 net.cpp:369] relu2 -> conv2 (in-place)

I0122 23:02:21.941193  2968 net.cpp:124] Setting up relu2

I0122 23:02:21.941208  2968 net.cpp:131] Top shape: 10 256 27 27 (1866240)

I0122 23:02:21.941220  2968 net.cpp:139] Memory required for data: 49944120

I0122 23:02:21.941232  2968 layer_factory.hpp:77] Creating layer pool2

I0122 23:02:21.941248  2968 net.cpp:86] Creating Layer pool2

I0122 23:02:21.941259  2968 net.cpp:408] pool2 <- conv2

I0122 23:02:21.941275  2968 net.cpp:382] pool2 -> pool2

I0122 23:02:21.941301  2968 net.cpp:124] Setting up pool2

I0122 23:02:21.941316  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.941328  2968 net.cpp:139] Memory required for data: 51674680

I0122 23:02:21.941339  2968 layer_factory.hpp:77] Creating layer norm2

I0122 23:02:21.941360  2968 net.cpp:86] Creating Layer norm2

I0122 23:02:21.941372  2968 net.cpp:408] norm2 <- pool2

I0122 23:02:21.941390  2968 net.cpp:382] norm2 -> norm2

I0122 23:02:21.941411  2968 net.cpp:124] Setting up norm2

I0122 23:02:21.941426  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.941437  2968 net.cpp:139] Memory required for data: 53405240

I0122 23:02:21.941448  2968 layer_factory.hpp:77] Creating layer conv3

I0122 23:02:21.941468  2968 net.cpp:86] Creating Layer conv3

I0122 23:02:21.941478  2968 net.cpp:408] conv3 <- norm2

I0122 23:02:21.941495  2968 net.cpp:382] conv3 -> conv3

I0122 23:02:21.943603  2968 net.cpp:124] Setting up conv3

I0122 23:02:21.943662  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.943675  2968 net.cpp:139] Memory required for data: 56001080

I0122 23:02:21.943711  2968 layer_factory.hpp:77] Creating layer relu3

I0122 23:02:21.943733  2968 net.cpp:86] Creating Layer relu3

I0122 23:02:21.943747  2968 net.cpp:408] relu3 <- conv3

I0122 23:02:21.943765  2968 net.cpp:369] relu3 -> conv3 (in-place)

I0122 23:02:21.943786  2968 net.cpp:124] Setting up relu3

I0122 23:02:21.943801  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.943812  2968 net.cpp:139] Memory required for data: 58596920

I0122 23:02:21.943822  2968 layer_factory.hpp:77] Creating layer conv4

I0122 23:02:21.943848  2968 net.cpp:86] Creating Layer conv4

I0122 23:02:21.943861  2968 net.cpp:408] conv4 <- conv3

I0122 23:02:21.943881  2968 net.cpp:382] conv4 -> conv4

I0122 23:02:21.944964  2968 net.cpp:124] Setting up conv4

I0122 23:02:21.945030  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.945047  2968 net.cpp:139] Memory required for data: 61192760

I0122 23:02:21.945148  2968 layer_factory.hpp:77] Creating layer relu4

I0122 23:02:21.945188  2968 net.cpp:86] Creating Layer relu4

I0122 23:02:21.945206  2968 net.cpp:408] relu4 <- conv4

I0122 23:02:21.945230  2968 net.cpp:369] relu4 -> conv4 (in-place)

I0122 23:02:21.945258  2968 net.cpp:124] Setting up relu4

I0122 23:02:21.945277  2968 net.cpp:131] Top shape: 10 384 13 13 (648960)

I0122 23:02:21.945291  2968 net.cpp:139] Memory required for data: 63788600

I0122 23:02:21.945303  2968 layer_factory.hpp:77] Creating layer conv5

I0122 23:02:21.945334  2968 net.cpp:86] Creating Layer conv5

I0122 23:02:21.945353  2968 net.cpp:408] conv5 <- conv4

I0122 23:02:21.945376  2968 net.cpp:382] conv5 -> conv5

I0122 23:02:21.946549  2968 net.cpp:124] Setting up conv5

I0122 23:02:21.946606  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.946622  2968 net.cpp:139] Memory required for data: 65519160

I0122 23:02:21.946672  2968 layer_factory.hpp:77] Creating layer relu5

I0122 23:02:21.946698  2968 net.cpp:86] Creating Layer relu5

I0122 23:02:21.946717  2968 net.cpp:408] relu5 <- conv5

I0122 23:02:21.946743  2968 net.cpp:369] relu5 -> conv5 (in-place)

I0122 23:02:21.946771  2968 net.cpp:124] Setting up relu5

I0122 23:02:21.946792  2968 net.cpp:131] Top shape: 10 256 13 13 (432640)

I0122 23:02:21.946812  2968 net.cpp:139] Memory required for data: 67249720

I0122 23:02:21.946826  2968 layer_factory.hpp:77] Creating layer pool5

I0122 23:02:21.946848  2968 net.cpp:86] Creating Layer pool5

I0122 23:02:21.946864  2968 net.cpp:408] pool5 <- conv5

I0122 23:02:21.946885  2968 net.cpp:382] pool5 -> pool5

I0122 23:02:21.946935  2968 net.cpp:124] Setting up pool5

I0122 23:02:21.946971  2968 net.cpp:131] Top shape: 10 256 6 6 (92160)

I0122 23:02:21.946986  2968 net.cpp:139] Memory required for data: 67618360

I0122 23:02:21.947003  2968 layer_factory.hpp:77] Creating layer fc6

I0122 23:02:21.947028  2968 net.cpp:86] Creating Layer fc6

I0122 23:02:21.947044  2968 net.cpp:408] fc6 <- pool5

I0122 23:02:21.947065  2968 net.cpp:382] fc6 -> fc6

I0122 23:02:21.989847  2968 net.cpp:124] Setting up fc6

I0122 23:02:21.989913  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.989919  2968 net.cpp:139] Memory required for data: 67782200

I0122 23:02:21.989943  2968 layer_factory.hpp:77] Creating layer relu6

I0122 23:02:21.989967  2968 net.cpp:86] Creating Layer relu6

I0122 23:02:21.989975  2968 net.cpp:408] relu6 <- fc6

I0122 23:02:21.989989  2968 net.cpp:369] relu6 -> fc6 (in-place)

I0122 23:02:21.990003  2968 net.cpp:124] Setting up relu6

I0122 23:02:21.990010  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.990015  2968 net.cpp:139] Memory required for data: 67946040

I0122 23:02:21.990020  2968 layer_factory.hpp:77] Creating layer drop6

I0122 23:02:21.990031  2968 net.cpp:86] Creating Layer drop6

I0122 23:02:21.990036  2968 net.cpp:408] drop6 <- fc6

I0122 23:02:21.990043  2968 net.cpp:369] drop6 -> fc6 (in-place)

I0122 23:02:21.990067  2968 net.cpp:124] Setting up drop6

I0122 23:02:21.990074  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:21.990079  2968 net.cpp:139] Memory required for data: 68109880

I0122 23:02:21.990084  2968 layer_factory.hpp:77] Creating layer fc7

I0122 23:02:21.990094  2968 net.cpp:86] Creating Layer fc7

I0122 23:02:21.990099  2968 net.cpp:408] fc7 <- fc6

I0122 23:02:21.990111  2968 net.cpp:382] fc7 -> fc7

I0122 23:02:22.008998  2968 net.cpp:124] Setting up fc7

I0122 23:02:22.009058  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009106  2968 net.cpp:139] Memory required for data: 68273720

I0122 23:02:22.009145  2968 layer_factory.hpp:77] Creating layer relu7

I0122 23:02:22.009173  2968 net.cpp:86] Creating Layer relu7

I0122 23:02:22.009187  2968 net.cpp:408] relu7 <- fc7

I0122 23:02:22.009209  2968 net.cpp:369] relu7 -> fc7 (in-place)

I0122 23:02:22.009232  2968 net.cpp:124] Setting up relu7

I0122 23:02:22.009248  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009259  2968 net.cpp:139] Memory required for data: 68437560

I0122 23:02:22.009269  2968 layer_factory.hpp:77] Creating layer drop7

I0122 23:02:22.009286  2968 net.cpp:86] Creating Layer drop7

I0122 23:02:22.009299  2968 net.cpp:408] drop7 <- fc7

I0122 23:02:22.009322  2968 net.cpp:369] drop7 -> fc7 (in-place)

I0122 23:02:22.009346  2968 net.cpp:124] Setting up drop7

I0122 23:02:22.009362  2968 net.cpp:131] Top shape: 10 4096 (40960)

I0122 23:02:22.009371  2968 net.cpp:139] Memory required for data: 68601400

I0122 23:02:22.009382  2968 layer_factory.hpp:77] Creating layer fc8

I0122 23:02:22.009399  2968 net.cpp:86] Creating Layer fc8

I0122 23:02:22.009410  2968 net.cpp:408] fc8 <- fc7

I0122 23:02:22.009428  2968 net.cpp:382] fc8 -> fc8

I0122 23:02:22.017177  2968 net.cpp:124] Setting up fc8

I0122 23:02:22.017282  2968 net.cpp:131] Top shape: 10 1000 (10000)

I0122 23:02:22.017313  2968 net.cpp:139] Memory required for data: 68641400

I0122 23:02:22.017356  2968 layer_factory.hpp:77] Creating layer prob

I0122 23:02:22.017395  2968 net.cpp:86] Creating Layer prob

I0122 23:02:22.017411  2968 net.cpp:408] prob <- fc8

I0122 23:02:22.017433  2968 net.cpp:382] prob -> prob

I0122 23:02:22.017469  2968 net.cpp:124] Setting up prob

I0122 23:02:22.017491  2968 net.cpp:131] Top shape: 10 1000 (10000)

I0122 23:02:22.017504  2968 net.cpp:139] Memory required for data: 68681400

I0122 23:02:22.017516  2968 net.cpp:202] prob does not need backward computation.

I0122 23:02:22.017554  2968 net.cpp:202] fc8 does not need backward computation.

I0122 23:02:22.017566  2968 net.cpp:202] drop7 does not need backward computation.

I0122 23:02:22.017577  2968 net.cpp:202] relu7 does not need backward computation.

I0122 23:02:22.017588  2968 net.cpp:202] fc7 does not need backward computation.

I0122 23:02:22.017598  2968 net.cpp:202] drop6 does not need backward computation.

I0122 23:02:22.017609  2968 net.cpp:202] relu6 does not need backward computation.

I0122 23:02:22.017619  2968 net.cpp:202] fc6 does not need backward computation.

I0122 23:02:22.017630  2968 net.cpp:202] pool5 does not need backward computation.

I0122 23:02:22.017642  2968 net.cpp:202] relu5 does not need backward computation.

I0122 23:02:22.017652  2968 net.cpp:202] conv5 does not need backward computation.

I0122 23:02:22.017663  2968 net.cpp:202] relu4 does not need backward computation.

I0122 23:02:22.017674  2968 net.cpp:202] conv4 does not need backward computation.

I0122 23:02:22.017685  2968 net.cpp:202] relu3 does not need backward computation.

I0122 23:02:22.017696  2968 net.cpp:202] conv3 does not need backward computation.

I0122 23:02:22.017707  2968 net.cpp:202] norm2 does not need backward computation.

I0122 23:02:22.017720  2968 net.cpp:202] pool2 does not need backward computation.

I0122 23:02:22.017734  2968 net.cpp:202] relu2 does not need backward computation.

I0122 23:02:22.017746  2968 net.cpp:202] conv2 does not need backward computation.

I0122 23:02:22.017757  2968 net.cpp:202] norm1 does not need backward computation.

I0122 23:02:22.017770  2968 net.cpp:202] pool1 does not need backward computation.

I0122 23:02:22.017783  2968 net.cpp:202] relu1 does not need backward computation.

I0122 23:02:22.017796  2968 net.cpp:202] conv1 does not need backward computation.

I0122 23:02:22.017809  2968 net.cpp:202] input does not need backward computation.

I0122 23:02:22.017819  2968 net.cpp:244] This network produces output prob

I0122 23:02:22.017868  2968 net.cpp:257] Network initialization done.

I0122 23:02:22.196004  2968 upgrade_proto.cpp:44] Attempting to upgrade input file specified using deprecated transformation parameters: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/bvlc_reference_caffenet.caffemodel

I0122 23:02:22.196061  2968 upgrade_proto.cpp:47] Successfully upgraded file specified using deprecated data transformation parameters.

W0122 23:02:22.196069  2968 upgrade_proto.cpp:49] Note that future Caffe releases will only support transform_param messages for transformation fields.

I0122 23:02:22.196074  2968 upgrade_proto.cpp:53] Attempting to upgrade input file specified using deprecated V1LayerParameter: /home/relaybot/Rob_Soft/caffe/src/ros_caffe/data/bvlc_reference_caffenet.caffemodel

I0122 23:02:22.506147  2968 upgrade_proto.cpp:61] Successfully upgraded file specified using deprecated V1LayerParameter

I0122 23:02:22.507925  2968 net.cpp:746] Ignoring source layer data

I0122 23:02:22.597734  2968 net.cpp:746] Ignoring source layer loss

W0122 23:02:22.716584  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().

Test default image under /data/cat.jpg

0.3134 - "n02123045 tabby, tabby cat" 0.2380 - "n02123159 tiger cat" 0.1235 - "n02124075 Egyptian cat" 0.1003 - "n02119022 red fox, Vulpes vulpes" 0.0715 - "n02127052 lynx, catamount" W0122 23:07:35.308277  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward(). W0122 23:12:52.805382  2968 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().

$ rostopic list

/camera/rgb/image_raw /camera_info /image_raw /image_raw/compressed /image_raw/compressed/parameter_descriptions /image_raw/compressed/parameter_updates /image_raw/compressedDepth /image_raw/compressedDepth/parameter_descriptions /image_raw/compressedDepth/parameter_updates /image_raw/theora /image_raw/theora/parameter_descriptions /image_raw/theora/parameter_updates /rosout /rosout_agg

$ rostopic echo /caffe_ret

--- data: [0.557911 - n04286575 spotlight, spot] [0.115966 - n03729826 matchstick] [0.0737537 - n02948072 candle, taper, wax light] [0.040883 - n09472597 volcano] [0.028961 - n03666591 lighter, light, igniter, ignitor] ---

$ rosrun rqt_graph rqt_graph

-End-

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年01月22日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ROS + Caffe 机器人操作系统框架和深度学习框架笔记 (機器人控制與人工智能)
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档