前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Caffe Loss 层 - Lifted Struct Similarity Softmax Layer

Caffe Loss 层 - Lifted Struct Similarity Softmax Layer

作者头像
AIHGF
修改2020-06-12 11:26:02
5560
修改2020-06-12 11:26:02
举报
文章被收录于专栏:AIUAI

Caffe Loss - Lifted Struct Similarity Softmax Layer

Loss Layer From Deep-Metric-Learning-CVPR16.

1. 在 prototxt 中的定义

代码语言:javascript
复制
layer {
  name: "fc_embedding"
  type: "InnerProduct"
  bottom: "pool_ave"
  top: "fc_embedding"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  inner_product_param {
    num_output: 64  // feature dimension
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
####### LiftedStructSimilaritySoftmaxLoss #####
layer {
  name: "loss"
  type: "LiftedStructSimilaritySoftmaxLoss"
  bottom: "fc_embedding"
  bottom: "label"
  top: "loss"
  lifted_struct_sim_softmax_loss_param {
    margin: 1 // margin parameter \alpha  
  }
}

2. caffe.proto 中的定义

代码语言:javascript
复制
message LayerParameter {
    optional LiftedStructSimilaritySoftmaxLossParameter lifted_struct_sim_softmax_loss_param = 148;
}

message LiftedStructSimilaritySoftmaxLossParameter {
  optional float margin = 1 [default = 1.0]; // margin parameter \alpha
}

3. lifted_struct_similarity_softmax_layer.hpp

代码语言:javascript
复制
#ifndef CAFFE_LIFTED_STRUCT_SIMILARITY_LOSS_LAYER_HPP_
#define CAFFE_LIFTED_STRUCT_SIMILARITY_LOSS_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/loss_layer.hpp"

namespace caffe {

template <typename Dtype>
class LiftedStructSimilaritySoftmaxLossLayer : public LossLayer<Dtype> {
 public:
  explicit LiftedStructSimilaritySoftmaxLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline int ExactNumBottomBlobs() const { return 2; }
  virtual inline const char* type() const { return "LiftedStructSimilaritySoftmaxLoss"; }
  virtual inline bool AllowForceBackward(const int bottom_index) const {
    return bottom_index != 1;
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  Blob<Dtype> dist_sq_;  // cached for backward pass 
  Blob<Dtype> dot_;  //
  Blob<Dtype> ones_;
  Blob<Dtype> blob_pos_diff_;
  Blob<Dtype> blob_neg_diff_;
  Blob<Dtype> loss_aug_inference_;
  Blob<Dtype> summer_vec_;
  Dtype num_constraints;
};

}  // namespace caffe

#endif  // CAFFE_LIFTED_STRUCT_SIMILARITY_LOSS_LAYER_HPP_

4. lifted_struct_similarity_softmax_layer.cpp

代码语言:javascript
复制
#include <algorithm>
#include <vector>

#include "caffe/layers/lifted_struct_similarity_softmax_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void LiftedStructSimilaritySoftmaxLossLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::LayerSetUp(bottom, top);
  CHECK_EQ(bottom[0]->height(), 1);
  CHECK_EQ(bottom[0]->width(), 1);
  CHECK_EQ(bottom[1]->channels(), 1);
  CHECK_EQ(bottom[1]->height(), 1);
  CHECK_EQ(bottom[1]->width(), 1);
  // List of member variables defined in /include/caffe/loss_layers.hpp;
  //   diff_, dist_sq_, summer_vec_, loss_aug_inference_;
  dist_sq_.Reshape(bottom[0]->num(), 1, 1, 1);
  dot_.Reshape(bottom[0]->num(), bottom[0]->num(), 1, 1);
  ones_.Reshape(bottom[0]->num(), 1, 1, 1);  // n by 1 vector of ones.
  for (int i=0; i < bottom[0]->num(); ++i){
    ones_.mutable_cpu_data()[i] = Dtype(1);
  }
  blob_pos_diff_.Reshape(bottom[0]->channels(), 1, 1, 1);
  blob_neg_diff_.Reshape(bottom[0]->channels(), 1, 1, 1);
} 

template <typename Dtype>
void LiftedStructSimilaritySoftmaxLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {

  const int channels = bottom[0]->channels(); // feature dims
  for (int i = 0; i < bottom[0]->num(); i++){
    dist_sq_.mutable_cpu_data()[i] = caffe_cpu_dot(channels, bottom[0]->cpu_data() + (i*channels), bottom[0]->cpu_data() + (i*channels));  // \hat{x} in papaers
  }

  int M_ = bottom[0]->num(); // mini-batch 内样本数
  int N_ = bottom[0]->num();
  int K_ = bottom[0]->channels(); // 特征维度

  const Dtype* bottom_data1 = bottom[0]->cpu_data(); // 特征矩阵
  const Dtype* bottom_data2 = bottom[0]->cpu_data();

  Dtype dot_scaler(-2.0);
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, M_, N_, K_, dot_scaler, bottom_data1, bottom_data2, (Dtype)0., dot_.mutable_cpu_data());

  // add ||x_i||^2 to all elements in row i
  for (int i=0; i<N_; i++){
    caffe_axpy(N_, dist_sq_.cpu_data()[i], ones_.cpu_data(), dot_.mutable_cpu_data() + i*N_);
  }

  // add the norm vector to row i
  for (int i=0; i<N_; i++){
    caffe_axpy(N_, Dtype(1.0), dist_sq_.cpu_data(), dot_.mutable_cpu_data() + i*N_);
    caffe_abs(N_, dot_.mutable_cpu_data() + i*N_, dot_.mutable_cpu_data() + i*N_);
  }

  // construct pairwise label matrix
  vector<vector<bool> > label_mat(N_, vector<bool>(N_, false));
  for (int i=0; i<N_; i++){
    for (int j=0; j<N_; j++){
      label_mat[i][j] = (bottom[1]->cpu_data()[i] == bottom[1]->cpu_data()[j]);
    }
  }

  Dtype margin = this->layer_param_.lifted_struct_sim_softmax_loss_param().margin();
  Dtype loss(0.0);
  num_constraints = Dtype(0.0); 
  const Dtype* bin = bottom[0]->cpu_data();
  Dtype* bout = bottom[0]->mutable_cpu_diff();

  // zero initialize bottom[0]->mutable_cpu_diff();
  for (int i=0; i<N_; i++){
    caffe_set(K_, Dtype(0.0), bout + i*K_);
  }

  // loop upper triangular matrix and look for positive anchors
  for (int i=0; i<N_; i++){
    for (int j=i+1; j<N_; j++){

      // found a positive pair @ anchor (i, j)
      if (label_mat[i][j]){
        Dtype dist_pos = sqrt(dot_.cpu_data()[i*N_ + j] + 2e-10);

        caffe_sub(K_, bin + i*K_, bin + j*K_, blob_pos_diff_.mutable_cpu_data());

        // 1.count the number of negatives for this positive
        int num_negatives = 0;
        for (int k=0; k<N_; k++){
          if (!label_mat[i][k]){
            num_negatives += 1;
          }
        }

        for (int k=0; k<N_; k++){
          if (!label_mat[j][k]){
            num_negatives += 1;
          }
        }

        loss_aug_inference_.Reshape(num_negatives, 1, 1, 1);

        // vector of ones used to sum along channels
        summer_vec_.Reshape(num_negatives, 1, 1, 1);
        for (int ss = 0; ss < num_negatives; ++ss){
          summer_vec_.mutable_cpu_data()[ss] = Dtype(1);
        }

        // 2. compute loss augmented inference
        int neg_idx = 0;
        // mine negative (anchor i, neg k)
        for (int k=0; k<N_; k++){
          if (!label_mat[i][k]){
            loss_aug_inference_.mutable_cpu_data()[neg_idx] = margin - sqrt(dot_.cpu_data()[i*N_ + k]);
            neg_idx++;
          }
        }

        // mine negative (anchor j, neg k)
        for (int k=0; k<N_; k++){
          if (!label_mat[j][k]){
            loss_aug_inference_.mutable_cpu_data()[neg_idx] = margin - sqrt(dot_.cpu_data()[j*N_ + k]);
            neg_idx++;
          }
        }

        // compute softmax of loss aug inference vector;
        Dtype max_elem = *std::max_element(loss_aug_inference_.cpu_data(), loss_aug_inference_.cpu_data() + num_negatives);

        caffe_add_scalar(loss_aug_inference_.count(), Dtype(-1.0)*max_elem, loss_aug_inference_.mutable_cpu_data());
        caffe_exp(loss_aug_inference_.count(), loss_aug_inference_.mutable_cpu_data(), loss_aug_inference_.mutable_cpu_data());
        Dtype soft_maximum = log(caffe_cpu_dot(num_negatives, summer_vec_.cpu_data(), loss_aug_inference_.mutable_cpu_data())) + max_elem;

        Dtype this_loss = std::max(soft_maximum + dist_pos, Dtype(0.0));

        // squared hinge
        loss += this_loss * this_loss;
        num_constraints += Dtype(1.0);

        // 3. compute gradients
        Dtype sum_exp = caffe_cpu_dot(num_negatives, summer_vec_.cpu_data(), loss_aug_inference_.mutable_cpu_data());

        // update from positive distance dJ_dD_{ij}; update x_i, x_j
        Dtype scaler(0.0);


        scaler = Dtype(2.0)*this_loss / dist_pos;
        // update x_i
        caffe_axpy(K_, scaler * Dtype(1.0), blob_pos_diff_.cpu_data(), bout + i*K_);
        // update x_j
        caffe_axpy(K_, scaler * Dtype(-1.0), blob_pos_diff_.cpu_data(), bout + j*K_);

        // update from negative distance dJ_dD_{ik}; update x_i, x_k
        neg_idx = 0;
        Dtype dJ_dDik(0.0);
        for (int k=0; k<N_; k++){
          if (!label_mat[i][k]){
            caffe_sub(K_, bin + i*K_, bin + k*K_, blob_neg_diff_.mutable_cpu_data());

            dJ_dDik = Dtype(2.0)*this_loss * Dtype(-1.0)* loss_aug_inference_.cpu_data()[neg_idx] / sum_exp;
            neg_idx++;

            scaler = dJ_dDik / sqrt(dot_.cpu_data()[i*N_ + k]);

            // update x_i
            caffe_axpy(K_, scaler * Dtype(1.0), blob_neg_diff_.cpu_data(), bout + i*K_);
            // update x_k
            caffe_axpy(K_, scaler * Dtype(-1.0), blob_neg_diff_.cpu_data(), bout + k*K_);
          }
        }

        // update from negative distance dJ_dD_{jk}; update x_j, x_k
        Dtype dJ_dDjk(0.0);
        for (int k=0; k<N_; k++){
          if (!label_mat[j][k]){
            caffe_sub(K_, bin + j*K_, bin + k*K_, blob_neg_diff_.mutable_cpu_data());

            dJ_dDjk = Dtype(2.0)*this_loss * Dtype(-1.0)*loss_aug_inference_.cpu_data()[neg_idx] / sum_exp;
            neg_idx++;

            scaler = dJ_dDjk / sqrt(dot_.cpu_data()[j*N_ + k]);

            // update x_j
            caffe_axpy(K_, scaler * Dtype(1.0), blob_neg_diff_.cpu_data(), bout + j*K_);
            // update x_k
            caffe_axpy(K_, scaler * Dtype(-1.0), blob_neg_diff_.cpu_data(), bout + k*K_);
          }
        }
      } // close this postive pair
    }
  }
  loss = loss / num_constraints / Dtype(2.0);
  top[0]->mutable_cpu_data()[0] = loss;
}

template <typename Dtype>
void LiftedStructSimilaritySoftmaxLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {

  const Dtype alpha = top[0]->cpu_diff()[0] / num_constraints / Dtype(2.0);

  int num = bottom[0]->num();
  int channels = bottom[0]->channels();
  for (int i = 0; i < num; i++){
    Dtype* bout = bottom[0]->mutable_cpu_diff();
    caffe_scal(channels, alpha, bout + (i*channels));
  }
}

#ifdef CPU_ONLY
STUB_GPU(LiftedStructSimilaritySoftmaxLossLayer);
#endif

INSTANTIATE_CLASS(LiftedStructSimilaritySoftmaxLossLayer);
REGISTER_LAYER_CLASS(LiftedStructSimilaritySoftmaxLoss);

}  // namespace caffe

5. lifted struct similarity softmax layer 实现细节分析

主要是分析理解论文中公式及源码分析.


代码语言:javascript
复制
const int channels = bottom[0]->channels(); // bottom[0] - channels = 64 dim
for (int i = 0; i < bottom[0]->num(); i++){ // i = 1:m
    dist_sq_.mutable_cpu_data()[i] = caffe_cpu_dot(channels, bottom[0]->cpu_data() + (i*channels), bottom[0]->cpu_data() + (i*channels)); // cpu 上的 dot 计算
}


代码语言:javascript
复制
int M_ = bottom[0]->num(); // M_ = m
int N_ = bottom[0]->num(); // N_ = m
int K_ = bottom[0]->channels(); // K_ = 64

const Dtype* bottom_data1 = bottom[0]->cpu_data(); // (m, 64, 1, 1)
const Dtype* bottom_data2 = bottom[0]->cpu_data(); // (m, 64, 1, 1)

Dtype dot_scaler(-2.0);
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, M_, N_, K_, dot_scaler, bottom_data1, bottom_data2, (Dtype)0., dot_.mutable_cpu_data());

void caffe_cpu_gemm(const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const Dtype alpha, const Dtype* A, const Dtype* B, const Dtype beta, Dtype* C); 功能: C=alpha*A*B+beta*C A,B,C 是输入矩阵(一维数组格式) CblasRowMajor :数据是行主序的(二维数据也是用一维数组储存的) TransA, TransB:是否要对A和B做转置操作(CblasTrans CblasNoTrans) M: A、C 的行数 N: B、C 的列数 K: A 的列数, B 的行数 lda : A的列数(不做转置)行数(做转置) ldb: B的列数(不做转置)行数(做转置)


代码语言:javascript
复制
// add ||x_i||^2 to all elements in row i
for (int i=0; i<N_; i++){ // N_ = 64
    caffe_axpy(N_, dist_sq_.cpu_data()[i], ones_.cpu_data(), dot_.mutable_cpu_data() + i*N_);
}

// add the norm vector to row i
for (int i=0; i<N_; i++){
    caffe_axpy(N_, Dtype(1.0), dist_sq_.cpu_data(), dot_.mutable_cpu_data() + i*N_); //这里可能出现负值
    caffe_abs(N_, dot_.mutable_cpu_data() + i*N_, dot_.mutable_cpu_data() + i*N_); // 加绝对值
}


代码语言:javascript
复制
// construct pairwise label matrix
vector<vector<bool> > label_mat(N_, vector<bool>(N_, false));
for (int i=0; i<N_; i++){
  for (int j=0; j<N_; j++){
    label_mat[i][j] = (bottom[1]->cpu_data()[i] == bottom[1]->cpu_data()[j]);
  }
}

针对 mini-batch 内的正负样本建立矩阵,label_mat中相同 label 的位置值为 1, 不同则为 0.


正向传播计算:

代码语言:javascript
复制
// 在 label_mat 矩阵的上三角矩阵进行循环,寻找 positive anchors
for (int i=0; i<N_; i++){
  for (int j=i+1; j<N_; j++){

    // 如果 label_mat 值为1,则找到一个 positive pair @ anchor (i, j)
    if (label_mat[i][j]){
      Dtype dist_pos = sqrt(dot_.cpu_data()[i*N_ + j] + 2e-10); // D_{ij} 

      caffe_sub(K_, bin + i*K_, bin + j*K_, blob_pos_diff_.mutable_cpu_data());
      // blob_pos_diff_ = [bin + i*K] - [bin + j*k] 

void caffe_sub(const int n, const float* a, const float* b, float* y) { vsSub(n, a, b, y); } y[i] = a[i] - b[i]

代码语言:javascript
复制
      // 1. 计算 positive 样本 i 的 negetives 样本数 
      int num_negatives = 0;
      for (int k=0; k<N_; k++){
        if (!label_mat[i][k]){
          num_negatives += 1;
        }
      }

      // 计算 positive 样本 j 的 negetives 样本数 
      for (int k=0; k<N_; k++){
        if (!label_mat[j][k]){
          num_negatives += 1;
        }
      }

      loss_aug_inference_.Reshape(num_negatives, 1, 1, 1);

      // vector of ones used to sum along channels
      summer_vec_.Reshape(num_negatives, 1, 1, 1);
      for (int ss = 0; ss < num_negatives; ++ss){
        summer_vec_.mutable_cpu_data()[ss] = Dtype(1);
      }

这里主要是统计 positive pair {i, j} 所对应的 negetives 样本总数.

代码语言:javascript
复制
      // 2. 计算 loss
      int neg_idx = 0;
      // mine negative (anchor i, neg k)
      for (int k=0; k<N_; k++){
        if (!label_mat[i][k]){
          loss_aug_inference_.mutable_cpu_data()[neg_idx] = margin - sqrt(dot_.cpu_data()[i*N_ + k]); // margin - D_{i,k}
          neg_idx++;
        }
      }

      // mine negative (anchor j, neg k)
      for (int k=0; k<N_; k++){
        if (!label_mat[j][k]){
          loss_aug_inference_.mutable_cpu_data()[neg_idx] = margin - sqrt(dot_.cpu_data()[j*N_ + k]); // margin - D_{j,k}
          neg_idx++;
        }
      }

      // compute softmax of loss aug inference vector;
      Dtype max_elem = *std::max_element(loss_aug_inference_.cpu_data(), loss_aug_inference_.cpu_data() + num_negatives);

      caffe_add_scalar(loss_aug_inference_.count(), Dtype(-1.0)*max_elem, loss_aug_inference_.mutable_cpu_data());
      caffe_exp(loss_aug_inference_.count(), loss_aug_inference_.mutable_cpu_data(), loss_aug_inference_.mutable_cpu_data());
      Dtype soft_maximum = log(caffe_cpu_dot(num_negatives, summer_vec_.cpu_data(), loss_aug_inference_.mutable_cpu_data())) + max_elem;

      // hinge the soft_maximum - S_ij (positive pair similarity)
      Dtype this_loss = std::max(soft_maximum + dist_pos, Dtype(0.0));

      // squared hinge
      loss += this_loss * this_loss; 
      num_constraints += Dtype(1.0);

反向传播计算:

代码语言:javascript
复制
      // 3. 梯度计算
      Dtype sum_exp = caffe_cpu_dot(num_negatives, summer_vec_.cpu_data(), loss_aug_inference_.mutable_cpu_data());

      // update from positive distance dJ_dD_{ij}; update x_i, x_j
      Dtype scaler(0.0);

      scaler = Dtype(2.0)*this_loss / dist_pos;
      // update x_i
      caffe_axpy(K_, scaler * Dtype(1.0), blob_pos_diff_.cpu_data(), bout + i*K_);
      // update x_j
      caffe_axpy(K_, scaler * Dtype(-1.0), blob_pos_diff_.cpu_data(), bout + j*K_);

      // update from negative distance dJ_dD_{ik}; update x_i, x_k
      neg_idx = 0;
      Dtype dJ_dDik(0.0);
      for (int k=0; k<N_; k++){
        if (!label_mat[i][k]){
          caffe_sub(K_, bin + i*K_, bin + k*K_, blob_neg_diff_.mutable_cpu_data());

          dJ_dDik = Dtype(2.0)*this_loss * Dtype(-1.0)* loss_aug_inference_.cpu_data()[neg_idx] / sum_exp;
          neg_idx++;

          scaler = dJ_dDik / sqrt(dot_.cpu_data()[i*N_ + k]);

          // update x_i
          caffe_axpy(K_, scaler * Dtype(1.0), blob_neg_diff_.cpu_data(), bout + i*K_);
          // update x_k
          caffe_axpy(K_, scaler * Dtype(-1.0), blob_neg_diff_.cpu_data(), bout + k*K_);
        }
      }

      // update from negative distance dJ_dD_{jk}; update x_j, x_k
      Dtype dJ_dDjk(0.0);
      for (int k=0; k<N_; k++){
        if (!label_mat[j][k]){
          caffe_sub(K_, bin + j*K_, bin + k*K_, blob_neg_diff_.mutable_cpu_data());

          dJ_dDjk = Dtype(2.0)*this_loss * Dtype(-1.0)*loss_aug_inference_.cpu_data()[neg_idx] / sum_exp;
          neg_idx++;

          scaler = dJ_dDjk / sqrt(dot_.cpu_data()[j*N_ + k]);

          // update x_j
          caffe_axpy(K_, scaler * Dtype(1.0), blob_neg_diff_.cpu_data(), bout + j*K_);
          // update x_k
          caffe_axpy(K_, scaler * Dtype(-1.0), blob_neg_diff_.cpu_data(), bout + k*K_);
          }
        }
      } // close this postive pair

6. Related

[1] - 论文阅读理解 - Deep Metric Learning via Lifted Structured Feature Embedding [2] - 论文实践学习 - Deep Metric Learning via Lifted Structured Feature Embedding

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年11月18日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Caffe Loss - Lifted Struct Similarity Softmax Layer
    • 1. 在 prototxt 中的定义
      • 2. caffe.proto 中的定义
        • 3. lifted_struct_similarity_softmax_layer.hpp
          • 4. lifted_struct_similarity_softmax_layer.cpp
            • 5. lifted struct similarity softmax layer 实现细节分析
              • 6. Related
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档