专栏首页爱撸猫的杰对象并不一定都是在堆上分配内存的

对象并不一定都是在堆上分配内存的

JVM内存分配策略

关于JVM的内存结构及内存分配方式,不是本文的重点,这里只做简单回顾。以下是我们知道的一些常识:

1、根据Java虚拟机规范,Java虚拟机所管理的内存包括方法区、虚拟机栈、本地方法栈、堆、程序计数器等。

2、我们通常认为JVM中运行时数据存储包括堆和栈。这里所提到的栈其实指的是虚拟机栈,或者说是虚拟栈中的局部变量表。

3、栈中存放一些基本类型的变量数据(int/short/long/byte/float/double/Boolean/char)和对象引用。

4、堆中主要存放对象,即通过new关键字创建的对象。

5、数组引用变量是存放在栈内存中,数组元素是存放在堆内存中。

在《深入理解Java虚拟机中》关于Java堆内存有这样一段描述:

但是,随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。

这里只是简单提了一句,并没有深入分析,很多人看到这里由于对JIT、逃逸分析等技术不了解,所以也无法真正理解上面这段话的含义。

PS:这里默认大家都了解什么是JIT,不了解的朋友可以先自行Google了解下

其实,在编译期间,JIT会对代码做很多优化。其中有一部分优化的目的就是减少内存堆分配压力,其中一种重要的技术叫做逃逸分析。

逃逸分析

逃逸分析(Escape Analysis)是目前Java虚拟机中比较前沿的优化技术。这是一种可以有效减少Java 程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用范围从而决定是否要将这个对象分配到堆上。

逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中,称为方法逃逸。

例如:

public static StringBuffer craeteStringBuffer(String s1, String s2) {    StringBuffer sb = new StringBuffer();    sb.append(s1);    sb.append(s2);    return sb; }

StringBuffer sb是一个方法内部变量,上述代码中直接将sb返回,这样这个StringBuffer有可能被其他方法所改变,这样它的作用域就不只是在方法内部,虽然它是一个局部变量,称其逃逸到了方法外部。甚至还有可能被外部线程访问到,譬如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸。

上述代码如果想要StringBuffer sb不逃出方法,可以这样写:

public static String createStringBuffer(String s1, String s2) {    StringBuffer sb = new StringBuffer();    sb.append(s1);    sb.append(s2);    return sb.toString(); }

不直接返回 StringBuffer,那么StringBuffer将不会逃逸出方法。

使用逃逸分析,编译器可以对代码做如下优化:

一、同步省略。如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。

二、将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配。

三、分离对象或标量替换。有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。

上面的关于同步省略的内容,我在《深入理解多线程(五)—— Java虚拟机的锁优化技术》中有介绍过,即锁优化中的锁消除技术,依赖的也是逃逸分析技术。

本文,主要来介绍逃逸分析的第二个用途:将堆分配转化为栈分配。

其实,以上三种优化中,栈上内存分配其实是依靠标量替换来实现的。由于不是本文重点,这里就不展开介绍了。如果大家感兴趣,我后面专门出一篇文章,全面介绍下逃逸分析。

在Java代码运行时,通过JVM参数可指定是否开启逃逸分析,

-XX:+DoEscapeAnalysis : 表示开启逃逸分析

-XX:-DoEscapeAnalysis : 表示关闭逃逸分析 

从jdk 1.7开始已经默认开始逃逸分析,如需关闭,需要指定-XX:-DoEscapeAnalysis

对象的栈上内存分配

我们知道,在一般情况下,对象和数组元素的内存分配是在堆内存上进行的。但是随着JIT编译器的日渐成熟,很多优化使这种分配策略并不绝对。JIT编译器就可以在编译期间根据逃逸分析的结果,来决定是否可以将对象的内存分配从堆转化为栈。

我们来看以下代码:

public static void main(String[] args) {    long a1 = System.currentTimeMillis();    for (int i = 0; i < 1000000; i++) {        alloc();    }    // 查看执行时间    long a2 = System.currentTimeMillis();    System.out.println("cost " + (a2 - a1) + " ms");    // 为了方便查看堆内存中对象个数,线程sleep    try {        Thread.sleep(100000);    } catch (InterruptedException e1) {        e1.printStackTrace();    } } private static void alloc() {    User user = new User(); } static class User { }

其实代码内容很简单,就是使用for循环,在代码中创建100万个User对象。

我们在alloc方法中定义了User对象,但是并没有在方法外部引用他。也就是说,这个对象并不会逃逸到alloc外部。经过JIT的逃逸分析之后,就可以对其内存分配进行优化。

我们指定以下JVM参数并运行:

-Xmx4G -Xms4G -XX:-DoEscapeAnalysis -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError

在程序打印出 cost XX ms 后,代码运行结束之前,我们使用[jmap][1]命令,来查看下当前堆内存中有多少个User对象:

➜  ~ jps 2809 StackAllocTest 2810 Jps ➜  ~ jmap -histo 2809 num     #instances         #bytes  class name ----------------------------------------------   1:           524       87282184  [I   2:       1000000       16000000  StackAllocTest$User   3:          6806        2093136  [B   4:          8006        1320872  [C   5:          4188         100512  java.lang.String   6:           581          66304  java.lang.Class

从上面的jmap执行结果中我们可以看到,堆中共创建了100万个StackAllocTest$User实例。

在关闭逃避分析的情况下(-XX:-DoEscapeAnalysis),虽然在alloc方法中创建的User对象并没有逃逸到方法外部,但是还是被分配在堆内存中。也就说,如果没有JIT编译器优化,没有逃逸分析技术,正常情况下就应该是这样的。即所有对象都分配到堆内存中。

接下来,我们开启逃逸分析,再来执行下以上代码。

-Xmx4G -Xms4G -XX:+DoEscapeAnalysis -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError

在程序打印出 cost XX ms 后,代码运行结束之前,我们使用jmap命令,来查看下当前堆内存中有多少个User对象:

➜  ~ jps 709 2858 Launcher 2859 StackAllocTest 2860 Jps ➜  ~ jmap -histo 2859 num     #instances         #bytes  class name ----------------------------------------------   1:           524      101944280  [I   2:          6806        2093136  [B   3:         83619        1337904  StackAllocTest$User   4:          8006        1320872  [C   5:          4188         100512  java.lang.String   6:           581          66304  java.lang.Class

从以上打印结果中可以发现,开启了逃逸分析之后(-XX:+DoEscapeAnalysis),在堆内存中只有8万多个StackAllocTest$User对象。也就是说在经过JIT优化之后,堆内存中分配的对象数量,从100万降到了8万。

除了以上通过jmap验证对象个数的方法以外,读者还可以尝试将堆内存调小,然后执行以上代码,根据GC的次数来分析,也能发现,开启了逃逸分析之后,在运行期间,GC次数会明显减少。正是因为很多堆上分配被优化成了栈上分配,所以GC次数有了明显的减少。

总结

所以,如果以后再有人问你:是不是所有的对象和数组都会在堆内存分配空间?

那么你可以告诉他:不一定,随着JIT编译器的发展,在编译期间,如果JIT经过逃逸分析,发现有些对象没有逃逸出方法,那么有可能堆内存分配会被优化成栈内存分配。但是这也并不是绝对的。就像我们前面看到的一样,在开启逃逸分析之后,也并不是所有User对象都没有在堆上分配。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 线上应用故障排查之二:高内存占用

    前一篇介绍了线上应用故障排查之一:高CPU占用,这篇主要分析高内存占用故障的排查。

    爱撸猫的杰
  • 互联网视频直播技术(广电总局、优酷土豆、XX直播)

    互联网直播是目前最火的技术之一,涵盖了很多方面的知识(网络,CDN,GPU,算法,图像处理),以下我介绍互联网直播的大体框架和关键技术点:

    爱撸猫的杰
  • HotSpot虚拟机对象相关内容

        普通对象的创建过程:虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加...

    爱撸猫的杰
  • Spark内部原理之内存管理

    Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark...

    smartsi
  • Spark内存调优

    Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark...

    王知无
  • Apache Spark 内存管理详解(下)

    弹性分布式数据集(RDD)作为Spark最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的...

    大数据技术架构
  • 客户端Unity性能分析

    目前大多数游戏使用的都是Unity引擎,所以对游戏Unity性能分析就显得十分重要,而Unity性能主要针对影响内存、CPU和GPU的不同参数进行分析。

    audy
  • Java文件读写原理和虚拟内存

      后面打算系统性的介绍下NIO和Netty的内容,因为这块内容也是每个程序员必须要掌握的内容,而在介绍NIO之前我们需要先了解下一些前置的知识

    用户4919348
  • NIO效率高的原理之零拷贝与直接内存映射

    在笔者上一篇博客,详解了NIO,并总结NIO相比BIO的效率要高的三个原因,点击查看。

    全菜工程师小辉
  • 老男孩教育每日一题-2017年3月21日

    用户2398817

扫码关注云+社区

领取腾讯云代金券