前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >YOLOV3 基于OpenCV DNN 的目标检测实现

YOLOV3 基于OpenCV DNN 的目标检测实现

作者头像
AIHGF
发布2019-04-01 14:47:57
1.8K1
发布2019-04-01 14:47:57
举报
文章被收录于专栏:AIUAI

原文: YOLOV3 基于OpenCV DNN 的目标检测实现 - AIUAI

这里主要是对 基于 YOLOV3 和 OpenCV的目标检测(PythonC++)[译] Python 完整实现的整理.

基于 YOLOV3 和 OpenCV的目标检测(PythonC++) - AIUAI

OpenCV DNN支持图像分类、对象检测、图像分割常见通用网络模型.

OpenCV4.X - DNN模块 Python APIs - AIUAI

1. YOLOV3 简述

OpenCV4.0如何跑YOLOv3对象检测模型 - OpenCV学堂

YOLOV3 网络结构如图:

image
image

YOLOV3 采用全卷积结构,有效减少了模型参数总数,取消了softmax层,模型输出结构如图:

image
image

2. YOLOV3 DNN 实现

模型下载:

代码语言:javascript
复制
# coco.names
wget https://github.com/pjreddie/darknet/blob/master/data/coco.names?raw=true -O ./coco.names

# YOLOV3
wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg?raw=true -O ./yolov3.cfg
wget https://pjreddie.com/media/files/yolov3.weights

# YOLOV3-tiny
wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
wget https://pjreddie.com/media/files/yolov3-tiny.weights

完整实现:

代码语言:javascript
复制
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import cv2
import sys
import numpy as np
import os
import matplotlib.pyplot as plt
import time


class general_yolov3(object):
    def __init__(self, modelpath, is_tiny=False):
        self.conf_threshold = 0.5  # Confidence threshold
        self.nms_threshold  = 0.4  # NMS threshold
        self.net_width  = 416      # 网络输入图像宽度
        self.net_height = 416      # 网络输入图像高度

        self.classes = self.get_coco_names()
        self.yolov3_model = self.get_yolov3_model(modelpath, is_tiny)
        self.outputs_names = self.get_outputs_names()


    def get_coco_names(self):
        # COCO 物体类别名
        classesFile = "/path/to/coco.names"
        classes = None
        with open(classesFile, 'rt') as f:
            classes = f.read().rstrip('\n').split('\n')

        return classes


    def get_yolov3_model(self, modelpath, is_tiny):
        if is_tiny:
            cfg_file = os.path.join(modelpath, "yolov3-tiny.cfg")
            weights_file = os.path.join(modelpath, "yolov3-tiny.weights")
        else:
            cfg_file = os.path.join(modelpath, "yolov3.cfg")
            weights_file = os.path.join(modelpath, "yolov3.weights")

        net = cv2.dnn.readNetFromDarknet(cfg_file, weights_file)
        net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
        net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)

        return net


    def get_outputs_names(self):
        # 所有网络层名
        layersNames = self.yolov3_model.getLayerNames()
        # 输出网络层名,如无连接输出的网络层.
        return [layersNames[i[0] - 1] for i in 
                self.yolov3_model.getUnconnectedOutLayers()]

    
    def postprocess(self, img_cv2, outputs):
        # 检测结果后处理
        # 采用 NMS 移除低 confidence 的边界框
        img_height, img_width, _ = img_cv2.shape
		
        # 只保留高 confidence scores 的输出边界框
        # 将最高 score 的类别标签作为边界框的类别标签
        class_ids = []
        confidences = []
        boxes = []
        for output in outputs:
            for detection in output:
                scores = detection[5:]
                class_id = np.argmax(scores)
                confidence = scores[class_id]
                if confidence > self.conf_threshold:
                    center_x = int(detection[0] * img_width)
                    center_y = int(detection[1] * img_height)
                    width = int(detection[2] * img_width)
                    height = int(detection[3] * img_height)
                    left = int(center_x - width / 2)
                    top = int(center_y - height / 2)
                    class_ids.append(class_id)
                    confidences.append(float(confidence))
                    boxes.append([left, top, width, height])
		
        # NMS 处理, 消除 lower confidences 的冗余重叠边界框
        indices = cv2.dnn.NMSBoxes(boxes, 
                                   confidences, 
                                   self.conf_threshold, 
                                   self.nms_threshold)
        results = []
        for ind in indices:
            res_box = {}
            res_box["class_id"] = class_ids[ind[0]]
            res_box["score"] = confidences[ind[0]]

            box = boxes[ind[0]]
            res_box["box"] = (box[0], 
                              box[1], 
                              box[0]+box[2], 
                              box[1]+box[3])
            results.append(res_box)

        return results


    def predict(self, img_file):
        img_cv2 = cv2.imread(img_file)

        # 创建网络输入的 4D blob.
        blob = cv2.dnn.blobFromImage(
            img_cv2, 1 / 255, 
            (self.net_width, self.net_height), 
            [0, 0, 0], 1, crop=False)
        # 设置模型的输入 blob
        self.yolov3_model.setInput(blob)
        # 前向计算
        outputs = self.yolov3_model.forward(self.outputs_names)
		# 后处理
        results = self.postprocess(img_cv2, outputs)

        return results


    def vis_res(self, img_file, results):
        # 可视化检测结果
        img_cv2 = cv2.imread(img_file)
        for result in results:
            left, top, right, bottom = result["box"]
            cv2.rectangle(img_cv2, 
                          (left, top), 
                          (right, bottom), 
                          (255, 178, 50), 3)

            # 边界框的类别名和 confidence score
            label = '%.2f' % result["score"]
            class_id = result["class_id"]
            if self.classes:
                assert (result["class_id"] < len(self.classes))
                label = '%s:%s' % (self.classes[class_id], label)
            # 
            label_size, baseline = cv2.getTextSize(
                label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            top = max(top, label_size[1])
            cv2.rectangle(
                img_cv2, 
                (left, top - round(1.5 * label_size[1])),
                (left + round(1.5 * label_size[0]), 
                 top + baseline), (255, 0, 0),
                cv2.FILLED)
            cv2.putText(img_cv2, label, (left, top), 
                        cv2.FONT_HERSHEY_SIMPLEX, 
                        0.75, (0, 0, 0), 1)
		# 计算速率信息
        # getPerfProfile() 函数返回模型的推断总时间以及
        # 每一网络层的耗时(in layersTimes).
        t, _ = self.yolov3_model.getPerfProfile()
        label = 'Inference time: %.2f ms' % \
        		(t * 1000.0 / cv2.getTickFrequency())
        cv2.putText(img_cv2, label, (0, 15), 
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))

        plt.figure(figsize=(10, 8))
        plt.imshow(img_cv2[:,:,::-1])
        plt.axis("off")
        plt.show()


if __name__ == '__main__':
    print("[INFO]Yolov3 object detection in OpenCV.")

    img_file = "test.jpg"

    start = time.time()
    modelpath = "/path/to/yolov3_models/"
    yolov3_model = general_yolov3(modelpath, is_tiny=True)
    print("[INFO]Model loads time: ", time.time() - start)

    start = time.time()
    results = yolov3_model.predict(img_file)
    print("[INFO]Model predicts time: ", time.time() - start)
    yolov3_model.vis_res(img_file, results)

    print("[INFO]Done.")

如:

yolov3-tiny 模型:

image
image

yolov3 模型:

image
image

3. 参考资料

[1] - OpenCV4.0如何跑YOLOv3对象检测模型 - OpenCV学堂

[2] - spmallick/learnopencv/ObjectDetection-YOLO

[3] - YOLO: Real-Time Object Detection

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年03月29日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. YOLOV3 简述
  • 2. YOLOV3 DNN 实现
  • 3. 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档