亿级流量场景下,大型缓存架构设计实现【全文检索高级搜索---ElasticSearch篇】

1、大白话、什么是Elasticsearch

Elasticsearch,分布式,高性能,高可用,可伸缩的搜索和分析系统

1、什么是搜索? 2、如果用数据库做搜索会怎么样? 3、什么是全文检索、倒排索引和Lucene? 4、什么是Elasticsearch?

------------------------------------------------------------------------------------------------------------------------

1、什么是搜索?

百度:我们比如说想找寻任何的信息的时候,就会上百度去搜索一下,比如说找一部自己喜欢的电影,或者说找一本喜欢的书,或者找一条感兴趣的新闻(提到搜索的第一印象) 百度 != 搜索,这是不对的

垂直搜索(站内搜索)

互联网的搜索:电商网站,招聘网站,新闻网站,各种app IT系统的搜索:OA软件,办公自动化软件,会议管理,日程管理,项目管理,员工管理,搜索“张三”,“张三儿”,“张小三”;有个电商网站,卖家,后台管理系统,搜索“牙膏”,订单,“牙膏相关的订单”

搜索,就是在任何场景下,找寻你想要的信息,这个时候,会输入一段你要搜索的关键字,然后就期望找到这个关键字相关的有些信息

------------------------------------------------------------------------------------------------------------------------

2、如果用数据库做搜索会怎么样?

做软件开发的话,或者对IT、计算机有一定的了解的话,都知道,数据都是存储在数据库里面的,比如说电商网站的商品信息,招聘网站的职位信息,新闻网站的新闻信息,等等吧。所以说,很自然的一点,如果说从技术的角度去考虑,如何实现如说,电商网站内部的搜索功能的话,就可以考虑,去使用数据库去进行搜索。

1、比方说,每条记录的指定字段的文本,可能会很长,比如说“商品描述”字段的长度,有长达数千个,甚至数万个字符,这个时候,每次都要对每条记录的所有文本进行扫描,懒判断说,你包不包含我指定的这个关键词(比如说“牙膏”) 2、还不能将搜索词拆分开来,尽可能去搜索更多的符合你的期望的结果,比如输入“生化机”,就搜索不出来“生化危机”

用数据库来实现搜索,是不太靠谱的。通常来说,性能会很差的。

------------------------------------------------------------------------------------------------------------------------

3、什么是全文检索和Lucene?

(1)全文检索,倒排索引 (2)lucene,就是一个jar包,里面包含了封装好的各种建立倒排索引,以及进行搜索的代码,包括各种算法。我们就用java开发的时候,引入lucene jar,然后基于lucene的api进行去进行开发就可以了。

    用lucene,我们就可以去将已有的数据建立索引,lucene会在本地磁盘上面,给我们组织索引的数据结构。另外的话,我们也可以用lucene提供的一些功能和api来针对磁盘上额

------------------------------------------------------------------------------------------------------------------------

4、什么是Elasticsearch?

(1)图解分析

 ---------------------------------------------------------------------------------------------------------

2、Elasticsearch功能以及适用场景

1、Elasticsearch的功能,干什么的 2、Elasticsearch的适用场景,能在什么地方发挥作用 3、Elasticsearch的特点,跟其他类似的东西不同的地方在哪里

1、Elasticsearch的功能

(1)分布式的搜索引擎和数据分析引擎

搜索:百度,网站的站内搜索,IT系统的检索 数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些;新闻网站,最近1个月访问量排名前3的新闻版块是哪些 分布式,搜索,数据分析

(2)全文检索,结构化检索,数据分析

全文检索:我想搜索商品名称包含牙膏的商品,select * from products where product_name like "%牙膏%" 结构化检索:我想搜索商品分类为日化用品的商品都有哪些,select * from products where category_id='日化用品' 部分匹配、自动完成、搜索纠错、搜索推荐 数据分析:我们分析每一个商品分类下有多少个商品,select category_id,count(*) from products group by category_id

(3)对海量数据进行近实时的处理

分布式:ES自动可以将海量数据分散到多台服务器上去存储和检索 海量数据的处理:分布式以后,就可以采用大量的服务器去存储和检索数据,自然而然就可以实现海量数据的处理了 近实时:检索个数据要花费1小时(这就不叫近实时,离线批处理,batch-processing);在秒级别对数据进行搜索和分析

跟分布式/海量数据相反的:lucene,单机应用,只能在单台服务器上使用,最多只能处理单台服务器可以处理的数据量

2、Elasticsearch的适用场景

国外

(1)维基百科,类似百度百科,牙膏,牙膏的维基百科,全文检索,高亮,搜索推荐 (2)The Guardian(国外新闻网站),类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据(对某某新闻的相关看法),数据分析,给到每篇新闻文章的作者,让他知道他的文章的公众反馈(好,坏,热门,垃圾,鄙视,崇拜) (3)Stack Overflow(国外的程序异常讨论论坛),IT问题,程序的报错,提交上去,有人会跟你讨论和回答,全文检索,搜索相关问题和答案,程序报错了,就会将报错信息粘贴到里面去,搜索有没有对应的答案 (4)GitHub(开源代码管理),搜索上千亿行代码 (5)电商网站,检索商品 (6)日志数据分析,logstash采集日志,ES进行复杂的数据分析(ELK技术,elasticsearch+logstash+kibana) (7)商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅牙膏的监控,如果高露洁牙膏的家庭套装低于50块钱,就通知我,我就去买 (8)BI系统,商业智能,Business Intelligence。比如说有个大型商场集团,BI,分析一下某某区域最近3年的用户消费金额的趋势以及用户群体的组成构成,产出相关的数张报表,**区,最近3年,每年消费金额呈现100%的增长,而且用户群体85%是高级白领,开一个新商场。ES执行数据分析和挖掘,Kibana进行数据可视化

国内

(9)国内:站内搜索(电商,招聘,门户,等等),IT系统搜索(OA,CRM,ERP,等等),数据分析(ES热门的一个使用场景)

3、Elasticsearch的特点

(1)可以作为一个大型分布式集群(数百台服务器)技术,处理PB级数据,服务大公司;也可以运行在单机上,服务小公司 (2)Elasticsearch不是什么新技术,主要是将全文检索、数据分析以及分布式技术,合并在了一起,才形成了独一无二的ES;lucene(全文检索),商用的数据分析软件(也是有的),分布式数据库(mycat) (3)对用户而言,是开箱即用的,非常简单,作为中小型的应用,直接3分钟部署一下ES,就可以作为生产环境的系统来使用了,数据量不大,操作不是太复杂 (4)数据库的功能面对很多领域是不够用的(事务,还有各种联机事务型的操作);特殊的功能,比如全文检索,同义词处理,相关度排名,复杂数据分析,海量数据的近实时处理;Elasticsearch作为传统数据库的一个补充,提供了数据库所不不能提供的很多功能

 ----------------------------------------------------------------------------------------------------------------------

 3、手工画图剖析Elasticsearch核心概念:NRT、索引、分片、副本等 [高质量和大小] [高质量和大小]

1、lucene和elasticsearch的前世今生 2、elasticsearch的核心概念 3、elasticsearch核心概念 vs. 数据库核心概念

----------------------------------------------------------------------------------------------------------------------------------------

1、lucene和elasticsearch的前世今生

lucene,最先进、功能最强大的搜索库,直接基于lucene开发,非常复杂,api复杂(实现一些简单的功能,写大量的java代码),需要深入理解原理(各种索引结构)

elasticsearch,基于lucene,隐藏复杂性,提供简单易用的restful api接口、java api接口(还有其他语言的api接口) (1)分布式的文档存储引擎 (2)分布式的搜索引擎和分析引擎 (3)分布式,支持PB级数据

开箱即用,优秀的默认参数,不需要任何额外设置,完全开源

关于elasticsearch的一个传说,有一个程序员失业了,陪着自己老婆去英国伦敦学习厨师课程。程序员在失业期间想给老婆写一个菜谱搜索引擎,觉得lucene实在太复杂了,就开发了一个封装了lucene的开源项目,compass。后来程序员找到了工作,是做分布式的高性能项目的,觉得compass不够,就写了elasticsearch,让lucene变成分布式的系统。

----------------------------------------------------------------------------------------------------------------------------------------

2、elasticsearch的核心概念

(1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级

(2)Cluster:集群,包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常 (3)Node:节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群

(4)Document&field:文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。一个document里面有多个field,每个field就是一个数据字段。

product document

{ "product_id": "1", "product_name": "高露洁牙膏", "product_desc": "高效美白", "category_id": "2", "category_name": "日化用品" }

(5)Index:索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。 (6)Type:类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。

--------------------------------------------------------------------------

商品index,里面存放了所有的商品数据,商品document

但是商品分很多种类,每个种类的document的field可能不太一样,比如说电器商品,可能还包含一些诸如售后时间范围这样的特殊field;生鲜商品,还包含一些诸如生鲜保质期之类的特殊field

type,日化商品type,电器商品type,生鲜商品type

日化商品type:product_id,product_name,product_desc,category_id,category_name 电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period 生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period

每一个type里面,都会包含一堆document

{ "product_id": "2", "product_name": "长虹电视机", "product_desc": "4k高清", "category_id": "3", "category_name": "电器", "service_period": "1年" }

{ "product_id": "3", "product_name": "基围虾", "product_desc": "纯天然,冰岛产", "category_id": "4", "category_name": "生鲜", "eat_period": "7天" }

(7)shard:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。 (8)replica:任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。

**************************************** 图示解析原理 ************************************

----------------------------------------------------------------------------------------------------------------------------------------

3、elasticsearch核心概念 vs. 数据库核心概念

Elasticsearch   |    数据库

-----------------------------------------

Document       |        行 Type               |       表 Index              |       库

-----------------------------------------------------------------------------------------------------------------------

4、ES的安装

1、安装JDK,至少1.8.0_73以上版本,java -version 2、下载和解压缩Elasticsearch安装包,目录结构 3、启动Elasticsearch:bin\elasticsearch.bat,es本身特点之一就是开箱即用,如果是中小型应用,数据量少,操作不是很复杂,直接启动就可以用了

4、检查ES是否启动成功:http://localhost:9200/?pretty

name: node名称 cluster_name: 集群名称(默认的集群名称就是elasticsearch) version.number: 5.2.0,es版本号

{ "name" : "4onsTYV", "cluster_name" : "elasticsearch", "cluster_uuid" : "nKZ9VK_vQdSQ1J0Dx9gx1Q", "version" : { "number" : "5.2.0", "build_hash" : "24e05b9", "build_date" : "2017-01-24T19:52:35.800Z", "build_snapshot" : false, "lucene_version" : "6.4.0" }, "tagline" : "You Know, for Search" }

5、修改集群名称:elasticsearch.yml 6、下载和解压缩Kibana安装包,使用里面的开发界面,去操作elasticsearch,作为我们学习es知识点的一个主要的界面入口 7、启动Kibana:bin\kibana.bat 8、进入Dev Tools界面 9、GET _cluster/health

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券