前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练

YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练

作者头像
量子位
发布2019-04-24 14:37:41
1.6K0
发布2019-04-24 14:37:41
举报
文章被收录于专栏:量子位
方栗子 发自 凹非寺 量子位 报道 | 公众号 QbitAI
来自YOLOv3原作者

YOLOv3,快如闪电,可称目标检测之光。

PyTorch实现教程去年4月就出现了,TensorFlow实现一直零零星星。

现在,有位热心公益的程序猿 (Yunyang1994) ,为它做了纯TensorFlow代码实现。

这份实现,支持用自己的数据训练模型。

介绍一下

TensorFlow实现,包含了以下部分:

· YOLOv3架构 · 权重转换器 (Weight Converter) · 基础版Demo · GPU和CPU上都支持非极大抑制 (Non-Maximum Suppression) · 训练pipeline · COCO mAP计算

来自YOLOv3原作者

快速开始

四个步骤,速速上车。

1.复制这个文件:

代码语言:javascript
复制
1$ git clone https://github.com/YunYang1994/tensorflow-yolov3.git

2.在食用代码前,先安装一些依赖项:

代码语言:javascript
复制
1$ cd tensorflow-yolov3
2$ pip install -r ./docs/requirements.txt

3.把加载好的COCO权重导出为TF checkpoint (yolov3.ckpt) 和 frozen graph (yolov3_gpu_nms.pb) 。

如果你没有yolov3.weights的话,去下载,然后放到./checkpoint目录下。下载地址是:

https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3.weights

代码语言:javascript
复制
1$ python convert_weight.py --convert --freeze

4.然后,./checkpoint目录下就会出现一些.pb文件。现在可以跑Demo脚本了:

代码语言:javascript
复制
1$ python nms_demo.py
2$ python video_demo.py # if use camera, set video_path = 0
来自YOLOv3原作者

拿自己的数据集训练

快速训练

这个Demo就是给大家一个粗略的感受,感受YOLOv3的训练过程到底是怎样的。

用python core/convert_tfrecord.py把你的图集转成TFRecords。

代码语言:javascript
复制
1$ python core/convert_tfrecord.py --dataset /data/train_data/quick_train_data/quick_train_data.txt  --tfrecord_path_prefix /data/train_data/quick_train_data/tfrecords/quick_train_data
2$ python quick_train.py  # start training

训练COCO数据集

如果还没下载COCO2017数据集,请前往:

http://cocodataset.org/

再把数据集放到./data/train_data/COCO里面。

代码语言:javascript
复制
1$ cd data/train_data/COCO
2$ wget http://images.cocodataset.org/zips/train2017.zip
3$ unzip train2017.zip
4$ wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
5$ unzip annotations_trainval2017.zip

然后,就要从数据集里提取一些有用的信息了,比如边界框,拿这些信息生成你自己的.txt文件。

代码语言:javascript
复制
1$ python core/extract_coco.py --dataset_info_path ./data/train_data/COCO/train2017.txt
来自YOLOv3原作者

上面这步得到的文件是./data/train_data/COCO/train2017.txt。拿一张图举栗,应该长这样:

代码语言:javascript
复制
1As a result, you will get ./data/train_data/COCO/train2017.txt. Here is an example row for one image:
2
3/home/yang/test/tensorflow-yolov3/data/train_data/train2017/000000458533.jpg 20 18.19 6.32 424.13 421.83 20 323.86 2.65 640.0 421.94
4/home/yang/test/tensorflow-yolov3/data/train_data/train2017/000000514915.jpg 16 55.38 132.63 519.84 380.4
5# image_path, category_id, x_min, y_min, x_max, y_max, category_id, x_min, y_min, ...

接下来,要把图像数据集转成.tfrecord,就是用二进制来保存数据。最后,可以训练啦。

代码语言:javascript
复制
1$ python core/convert_tfrecord.py --dataset ./data/train_data/COCO/train2017.txt  --tfrecord_path_prefix ./data/train_data/COCO/tfrecords/coco --num_tfrecords 100
2$ python train.py

COCO评估

如果要看一下模型在COCO上的表现,就这样做:

代码语言:javascript
复制
1$ cd data/train_data/COCO
2$ wget http://images.cocodataset.org/zips/test2017.zip
3$ wget http://images.cocodataset.org/annotations/image_info_test2017.zip 
4$ unzip test2017.zip
5$ unzip image_info_test2017.zip
来自YOLOv3原作者

“我今年没干啥”

YOLO系列的作者,是华盛顿大学两位画风奇崛的研究人员,一个叫Joseph Redmon,一个叫Ali Farhadi。

去年3月YOLOv3发布,两位在论文里是这样描述这项成果的:

我今年基本没做啥研究,净刷推特了,也玩了一小会儿GAN。去年还剩一点动力没用完,就给YOLO更了个新。没什么特别有意思的东西,一些细小的改动而已。

Introduction满分

但严肃地说,速度是v3最主要的提升。一般来讲,YOLOv3比R-CNN快1000倍,比Fast R-CNN快100倍。

有一些人啊,看起来常年不做正事,但还是能拿出精彩的成果。

还有一些人呢……

YOLOv3 TensorFlow实现传送门: https://github.com/YunYang1994/tensorflow-yolov3

(早就出了的) YOLO v3 PyTorch教程传送门: https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-01-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 介绍一下
  • 快速开始
  • 拿自己的数据集训练
    • 快速训练
      • 训练COCO数据集
        • COCO评估
        • “我今年没干啥”
        相关产品与服务
        图像识别
        腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档