专栏首页贾志刚-OpenCV学堂详解OpenCV卷积滤波之边缘处理与锚定输出

详解OpenCV卷积滤波之边缘处理与锚定输出

概述

OpenCV在使用卷积进行图像处理过程种,如何处理边缘像素锚定输出两个技术细节一直是很多人求而不得的疑惑。其实OpenCV在做卷积滤波时会对图像进行边界填充,实现对边缘像素的卷积计算的支持,不同填充方式不同锚定点会得到图像卷积输出不同的结果。

边界填充

我们首先来看一下OpenCV种支持标准卷积边缘填充做法,OpenCV支持的有如下几种卷积边缘填充算法:

常量边界

BORDER_CONSTANT

iiiiii|abcdefgh|iiiiiii

边界复制

BORDER_REPLICATE

aaaaaa|abcdefgh|hhhhhhh

边界反射

BORDER_REFLECT

fedcba|abcdefgh|hgfedcb

边界换行

BORDER_WRAP

cdefgh|abcdefgh|abcdefg

边界反射101

BORDER_REFLECT_101

gfedcb|abcdefgh|gfedcba

边界透明-很不幸运的是OpenCV4已经不支持啦!

BORDER_TRANSPARENT

uvwxyz|abcdefgh|ijklmno

默认填充方式

OpenCV中 filter2D, blur, GaussianBlur等卷积操作默认支持为BORDER_DEFAULT(BORDER_REFLECT_101)

各种不同方式对边缘的填充效果如下:

上图背景为红色,填充上下左右四个像素大小边缘!右下角为原图,左上角图像为常量边缘填充效果(i=0黑色)。

相关代码实现如下:

image = cv.imread("D:/images/qxx.png");
ih, iw = image.shape[:2]
border = 4

# 边界填充
b1 = cv.copyMakeBorder(image, border, border, border, border, cv.BORDER_CONSTANT)
b2 = cv.copyMakeBorder(image, border, border, border, border, cv.BORDER_REPLICATE)
b3 = cv.copyMakeBorder(image, border, border, border, border, cv.BORDER_REFLECT)
b4 = cv.copyMakeBorder(image, border, border, border, border, cv.BORDER_WRAP)
b5 = cv.copyMakeBorder(image, border, border, border, border, cv.BORDER_REFLECT_101)

# 边界填充类型说明
cv.putText(image, "input", (20,20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
cv.putText(b1, "BORDER_CONSTANT", (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
cv.putText(b2, "BORDER_REPLICATE", (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
cv.putText(b3, "BORDER_REFLECT", (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
cv.putText(b4, "BORDER_WRAP", (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))
cv.putText(b5, "BORDER_REFLECT_101", (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0))

# 拼接结果输出
h = b1.shape[0]*2+8
w = b1.shape[1]*3+16
bh, bw = b1.shape[:2]
result = np.zeros([h, w, 3], dtype=np.uint8)
result[:,:,:] = (0, 0, 255)
result[0:bh,0:bw,:] = b1;
result[0:bh, bw+8:bw+bw+8, :] = b2;
result[0:bh, bw+bw+16:bw+bw+bw+16, :] = b3;
result[bh+8:bh+bh+8,0:bw,:] = b4;
result[bh+8:bh+bh+8, bw+8:bw+bw+8, :] = b5;
result[bh+12:bh+12+ih, bw+bw+20:bw+bw+20+iw, :] = image;

# 显示
cv.imshow("result", result)
cv.imwrite("D:/border_result.png", result)
cv.waitKey(0)
cv.destroyAllWindows()

锚定位置

在进行卷积处理的时候,卷积mask与对应的像素块点乘得到输出,把输出结果赋值给哪个像素点是由锚定参数anchor决定,以自定义滤波函数filter2D为例说明

void cv::filter2D(
         InputArray src,
         OutputArray dst,
         int ddepth,
         InputArray      kernel,
         Point       anchor = Point(-1,-1),
         double    delta = 0,
         int borderType = BORDER_DEFAULT
)
其中
kernel - 表示输入的自定义卷积核大小
anchor - 表示锚定点位置,默认情况Point(-1, -1)表示是卷积核的中心位置
borderType - 表示边缘填充的像素大小,ksize/2其中ksize表示卷积核大小

上述函数在卷积核为奇数的时候,卷积核的中心位置很容易确定,比如3x3的卷积核大小,中心位置为Point(1,1)5x5的卷积核大小中心位置为Point(2,2)

但是当卷积核大小为偶数的时候,很多人都搞不清楚中心位置是如何确定的,其实这个时候中心也为(ksize/2), 对2x2的卷积核,中心位置为Point(1,1)4x4的卷积核中心位置为Point(2,2)

锚定位置对卷积结果的影响

以2x2与4x4的卷积核为与3x3与5x5的像素数据为例

情况一

2x2卷积核对3x3的像素块

当锚定点为默认(1,1)/(-1,-1)时候:

当锚定点设置为(0,0)时:

可以看到二者的输出结果全然不同,原因在于当锚定点不同的时候,卷积mask的开始位置也会不不同,图示如下:

情况二:

4x4卷积核对5x5的像素块:

使用BORDER_DEFAULT填充方式,填充之后为:

不同锚定位置的均值卷积输出结果:

三个不同锚定点对应卷积mask的起始位置与锚定像素输出:

代码演示如下:

src = np.zeros([3, 3], dtype=np.uint8)
src[0, 0] = 16
src[1, 1] = 8
src[2, 2] = 4
print("\n input image: \n",src)

k1 = [[1, 0], [0, -1]]
print("\nkernel : \n", k1)
result = cv.copyMakeBorder(src, 1, 1, 1, 1, cv.BORDER_DEFAULT)
print("\nBORDER_DEFAULT 边界填充 : \n", result)
dst = cv.filter2D(src, cv.CV_32F, np.asarray(k1), None, anchor=(0, 0), borderType=cv.BORDER_DEFAULT)
print("\nfilter2D : \n", dst)
print("\n")

src = np.zeros([5, 5], dtype=np.uint8)
src[0, 0] = 32
src[1, 1] = 16
src[2, 2] = 8
src[3, 3] = 4
src[4, 4] = 2
print("\ninput: \n", src)
k2 = np.ones([4, 4], dtype=np.int32)
print("\nkernel:\n", k2)
result = cv.copyMakeBorder(src, 3, 3, 3, 3, cv.BORDER_DEFAULT)
print("\n边界填充:\n", result)
dst = cv.filter2D(src, cv.CV_32F, np.asarray(k2), None, anchor=(-1, -1), borderType=cv.BORDER_DEFAULT)
print("\n filter2D Result: \n", dst)

本文分享自微信公众号 - OpenCV学堂(CVSCHOOL),作者:gloomyfish

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-04-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 二值图像分析案例精选

    最近一直有人在知识星球上向我提问很多二值图像分析相关的问题,特别选择了两个典型的轮廓分析问题。进行分析与编码实现与演示,废话不多说,先看第一个问题。

    OpenCV学堂
  • 【实战】OpenCV钢管计数分析与方法比较

    这个问题最早是在QQ群中看到,佳乐跟禾路分别用不同的两个思路完成了处理。原图如下:

    OpenCV学堂
  • OpenCV基于标记控制的分水岭分割算法演示

    图像分水岭分割是基于图像形态学的语义分割算法,常见的算法实现主要基于标记的分水岭分割方法,图示如下:

    OpenCV学堂
  • Yann LeCun卸任FAIR主管:FaceBook背后的AI走向

    【导读】1月24日,卷积神经网络之父杨立昆(Yann LeCun)卸任了Facebook人工智能研究实验室(简称FAIR)院长职务,继续任职首席科学家,更加专注...

    WZEARW
  • 基于dbunit进行mybatis DAO层Excel单元测试

    DAO层测试难点 可重复性,每次运行单元测试,得到的数据是重复的 独立性,测试数据与实际数据相互独立 数据库中脏数据预处理 不能给数据库中数据带来变化 DAO层...

    YGingko
  • 咦,Android Studio 3.5 Retry ?

    总会有那么一个人,让你觉得这个世界一切都是值得的。纵使结果不尽人意,曾经拥有即是最好。

    HLQ_Struggle
  • 模拟浏览器发送请求报文

    skylark
  • 第三节,SpringBoot集成shrio,Redis缓存session与权限

    https://gitee.com/DencyCheng/springboot-shrio/tree/dev/

    DencyCheng
  • Go 语言的基本数据类型

    0)变量声明 var 变量名字 类型 = 表达式 例: var num int = 10 复制代码 其中“类型”或“= 表达式”两个部分可以省略其中的一个。 1...

    李海彬
  • Linux学习14-CentOS安装gitlab环境

    在学习Gitlab的环境搭建之前,首先需要了解Git,Gitlab,GitHub他们三者之间的关系

    上海-悠悠

扫码关注云+社区

领取腾讯云代金券