专栏首页思谱云汇人工智能智能语音机器人小知识(3)--什么是语音识别技术?
原创

智能语音机器人小知识(3)--什么是语音识别技术?

语音识别技术,也被称为自动语音识别Automatic Speech Recognition (ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

语音识别技术的应用场景包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。

语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

历史

早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。到1950年代末,伦敦学院(College of London)的Denes已经将语法概率加入语音识别中。

1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC), 及动态时间规整Dynamic Time Warp技术。

语音识别技术的最重大突破是隐马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的非特定人大词汇量连续语音识别系统Sphinx。此后严格来说语音识别技术并没有脱离HMM框架。

模型编辑

目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成:

信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。

统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。

发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。

语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。

解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。

国外研究

20世纪90年代前期,许多著名的大公司如IBM、苹果、AT&T和NTT都对语音识别系统的实用化研究投以巨资。语音识别技术有一个很好的评估机制,那就是识别的准确率,而这项指标在20世纪90年代中后期实验室研究中得到了不断的提高。比较有代表性的系统有:IBM公司推出的ViaVoice和DragonSystem公司的NaturallySpeaking,Nuance公司的NuanceVoicePlatform语音平台,Microsoft的Whisper,Sun的VoiceTone等。

其中IBM公司于1997年开发出汉语ViaVoice语音识别系统,次年又开发出可以识别上海话、广东话和四川话等地方口音的语音识别系统ViaVoice'98。它带有一个32,000词的基本词汇表,可以扩展到65,000词,还包括办公常用词条,具有“纠错机制”,其平均识别率可以达到95%。该系统对新闻语音识别具有较高的精度,是目前具有代表性的汉语连续语音识别系统。

国内研究

我国语音识别研究工作起步于五十年代,但近年来发展很快。研究水平也从实验室逐步走向实用。从1987年开始执行国家863计划后,国家863智能计算机专家组为语音识别技术研究专门立项,每两年滚动一次。我国语音识别技术的研究水平已经基本上与国外同步,在汉语语音识别技术上还有自己的特点与优势,并达到国际先进水平。中科院自动化所、声学所、清华大学、北京大学、哈尔滨工业大学、上海交通大学、中国科技大学、北京邮电大学、华中科技大学等科研机构都有实验室进行过语音识别方面的研究,其中具有代表性的研究单位为清华大学电子工程系与中科院自动化研究所模式识别国家重点实验室。

清华大学电子工程系语音技术与专用芯片设计课题组,研发的非特定人汉语数码串连续语音识别系统的识别精度,达到94.8%(不定长数字串)和96.8%(定长数字串)。在有5%的拒识率情况下,系统识别率可以达到96.9%(不定长数字串)和98.7%(定长数字串),这是目前国际最好的识别结果之一,其性能已经接近实用水平。研发的5000词邮包校核非特定人连续语音识别系统的识别率达到98.73%,前三选识别率达99.96%;并且可以识别普通话与四川话两种语言,达到实用要求。

中科院自动化所及其所属模式科技(Pattek)公司2002年发布了他们共同推出的面向不同计算平台和应用的“天语”中文语音系列产品——PattekASR,结束了中文语音识别产品自1998年以来一直由国外公司垄断的历史。

科大讯飞(股票代码:002230)目前拥有国际领先的连续语音识别技术,识别准确率超过95%,语音输入速度达180字/分,识别结果响应时间低于500ms。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 智能语音机器人小知识(5)--什么是TTS技术?

    TTS是Text To Speech的缩写,即“从文本到语音”,是人机对话的一部分,让机器能够说话。

    思谱云汇
  • 智能语音机器人小知识(2)--什么是TCP/IP协议?

    传输控制协议/互联网协议(Transmission Control Protocol/Internet Protocol)又名网络通讯协议。

    思谱云汇
  • 人机交互技术研究的最新趋势

    当人类彼此交谈时,他们的交流方式远比简单的语言交谈方式多得多。他们说话的方式很重要——面部表情、语调和肢体语言。如果没有这些额外的提示,就很难用言语或文字进行交...

    思谱云汇
  • 神一样的文字转语音软件,不仅免费功能还强大

    之前给大家推荐过小程序分享丨智能文字转语音神器,讯飞快读这个小程序可以解决大家文字转语音的问题,小轻论坛也绑定了讯飞快读,大家可以在公众号的菜单栏打开这个小程序...

    半夜喝可乐
  • 干货 | 极限元算法专家:深度学习在语音生成问题上的典型应用 | 分享总结

    AI 科技评论按:深度学习在2006年崭露头角后,近几年取得了快速发展,在学术界和工业界均呈现出指数级增长的趋势;伴随着这项技术的不断成熟,深度学习在智能语音领...

    AI科技评论
  • 语音巨头时代来临!谁将是中国Siri?

    大约一年前,中国移动以13.6亿人民币的代价获得了科大讯飞15%的股权,后者股价一路攀升,从不足30元到最高61元,成为一大牛股,市值高达240多亿人民...

    罗超频道
  • 超过十分之一的报告篇幅给语音,互联网女皇为何看好麦克风?

    KPCB合伙人、享有“互联网女皇”称号的玛丽·米克尔的互联网趋势报告于今天正式发布。毫不夸张地说,这份报告是互联网行业分析的“超级碗”,它用200多页的Keyn...

    罗超频道
  • AI语音交互领域常用的4个术语

    语音合成标记语言的英文全称是Speech Synthesis Markup Language,这是一种基于XML的标记语言,可让开发人员指定如何使用文本转语音...

    曼孚科技
  • 科大讯飞,站在十字路口

    在位于合肥规划中三到四平方公里的中国语音产业园,建筑机械群正在紧张作业。在竣工的讯飞大厦里,两千多名科大讯飞员工围绕“声音”忙碌着。在移动互联网的风口,...

    罗超频道
  • 语音直播平台源码打造不同服务场景常用技术解决方案

    以声音这种更方便、亲近的交流方式能传递的信息比文字更多,语音、语气、语调甚至停顿长短都能反应一个人的情绪变化,不少年轻用户看来,声音可以让自己更贴切地感知到对方...

    布谷安妮

扫码关注云+社区

领取腾讯云代金券