前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业

【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业

作者头像
Steve Wang
发布2019-05-28 18:02:36
2K0
发布2019-05-28 18:02:36
举报
文章被收录于专栏:从流域到海域从流域到海域

【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业 - 带有一个隐藏层的平面数据分类


上一篇:【 课程1 - 第三周测验】※※※※※ 【回到目录】※※※※※下一篇:【课程1 - 第四周测验】


声明

   首先声明本文参考【Kulbear】的github上的文章,本文参考Planar data classification with one hidden layer,我基于他的文章加以自己的理解发表这篇博客,力求让大家以最轻松的姿态理解吴恩达的视频,如有不妥的地方欢迎大家指正。


本文所使用的资料已上传到百度网盘【点击下载】,请在开始之前下载好所需资料,或者在本文底部copy资料代码。


【博主使用的python版本:3.6.2】


开始之前

   在开始之前,我们简单说一下我们要做什么。我们要建立一个神经网络,它有一个隐藏层。你会发现这个模型和上一个逻辑回归实现的模型有很大的区别。你可以跟随我的步骤在Jupyter Notebook中一步步地把代码填进去,也可以直接复制完整代码,在完整代码在本文底部,testCases.py和planar_utils.py的完整代码也在最底部。在这篇文章中,我们会讲到以下的知识:

  • 构建具有单隐藏层的2类分类神经网络。
  • 使用具有非线性激活功能激活函数,例如tanh。
  • 计算交叉熵损失(损失函数)。
  • 实现向前和向后传播。

准备软件包

我们需要准备一些软件包:

  • numpy:是用Python进行科学计算的基本软件包。
  • sklearn:为数据挖掘和数据分析提供的简单高效的工具。
  • matplotlib :是一个用于在Python中绘制图表的库。
  • testCases:提供了一些测试示例来评估函数的正确性,参见下载的资料或者在底部查看它的代码。
  • planar_utils :提供了在这个任务中使用的各种有用的功能,参见下载的资料或者在底部查看它的代码。
代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。

np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。

加载和查看数据集

首先,我们来看看我们将要使用的数据集, 下面的代码会将一个花的图案的2类数据集加载到变量X和Y中。

代码语言:javascript
复制
X, Y = load_planar_dataset()

  把数据集加载完成了,然后使用matplotlib可视化数据集,代码如下:

代码语言:javascript
复制
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图

# 上一语句如出现问题,请使用下面的语句:
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) #绘制散点图
flower
flower

   数据看起来像一朵红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。 我们的目标是建立一个模型来适应这些数据。现在,我们已经有了以下的东西:

  • X:一个numpy的矩阵,包含了这些数据点的数值
  • Y:一个numpy的向量,对应着的是X的标签【0 | 1】(红色:0 , 蓝色 :1)

我们继续来仔细地看数据:

代码语言:javascript
复制
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # 训练集里面的数量

print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")

运行结果为:

代码语言:javascript
复制
X的维度为: (2, 400)
Y的维度为: (1, 400)
数据集里面的数据有:400 个

查看简单的Logistic回归的分类效果

  在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用sklearn的内置函数来做到这一点, 运行下面的代码来训练数据集上的逻辑回归分类器。

代码语言:javascript
复制
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T,Y.T)

  这里会打印出以下的信息(不同的机器提示大同小异):   E:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:547: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().   y = column_or_1d(y, warn=True)

我们可以把逻辑回归分类器的分类绘制出来:

代码语言:javascript
复制
plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
plt.title("Logistic Regression") #图标题
LR_predictions  = clf.predict(X.T) #预测结果
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) + 
        np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
       "% " + "(正确标记的数据点所占的百分比)")

我们看一看都打印了些什么吧!

代码语言:javascript
复制
逻辑回归的准确性: 47 % (正确标记的数据点所占的百分比)
Logistic Regression
Logistic Regression

准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。


搭建神经网络

我们要搭建的神经网络模型如下图:

Neural Network model image
Neural Network model image

当然还有我们的理论基础(不懂可以去仔细看看视频): 对于x(i)x(i)x^{(i)} 而言:

z[1](i)=W[1]x(i)+b[1](i)(1)(1)z[1](i)=W[1]x(i)+b[1](i)

z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1}

a[1](i)=tanh(z[1](i))(2)(2)a[1](i)=tanh⁡(z[1](i))

a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2}

z[2](i)=W[2]a[1](i)+b[2](i)(3)(3)z[2](i)=W[2]a[1](i)+b[2](i)

z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3}

y^(i)=a[2](i)=σ(z[2](i))(4)(4)y^(i)=a[2](i)=σ(z[2](i))

\hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4}

y(i)prediction={10if a[2](i)>0.5otherwise (5)(5)yprediction(i)={1if a[2](i)>0.50otherwise

y^{(i)}_{prediction} = \begin{cases} 1 & \mbox{if } a^{[2](i)} > 0.5 \\ 0 & \mbox{otherwise } \end{cases}\tag{5} 给出所有示例的预测结果,可以按如下方式计算成本J:

J=−1m∑i=0m(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))(6)(6)J=−1m∑i=0m(y(i)log⁡(a[2](i))+(1−y(i))log⁡(1−a[2](i)))

J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6}

构建神经网络的一般方法是: 1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。 2. 初始化模型的参数 3. 循环

  • 实施前向传播
  • 计算损失
  • 实现向后传播
  • 更新参数(梯度下降)

  我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。

定义神经网络结构

在构建之前,我们要先把神经网络的结构给定义好:

  • n_x: 输入层的数量
  • n_h: 隐藏层的数量(这里设置为4)
  • n_y: 输出层的数量
代码语言:javascript
复制
def layer_sizes(X , Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)

    返回:
     n_x - 输入层的数量
     n_h - 隐藏层的数量
     n_y - 输出层的数量
    """
    n_x = X.shape[0] #输入层
    n_h = 4 #,隐藏层,硬编码为4
    n_y = Y.shape[0] #输出层

    return (n_x,n_h,n_y)

我们来测试一下:

代码语言:javascript
复制
#测试layer_sizes
print("=========================测试layer_sizes=========================")
X_asses , Y_asses = layer_sizes_test_case()
(n_x,n_h,n_y) =  layer_sizes(X_asses,Y_asses)
print("输入层的节点数量为: n_x = " + str(n_x))
print("隐藏层的节点数量为: n_h = " + str(n_h))
print("输出层的节点数量为: n_y = " + str(n_y))

运行结果如下:

代码语言:javascript
复制
=========================测试layer_sizes=========================
输入层的节点数量为: n_x = 5
隐藏层的节点数量为: n_h = 4
输出层的节点数量为: n_y = 2

初始化模型的参数

在这里,我们要实现函数initialize_parameters()。我们要确保我们的参数大小合适,如果需要的话,请参考上面的神经网络图。 我们将会用随机值初始化权重矩阵。

  • np.random.randn(a,b)* 0.01来随机初始化一个维度为(a,b)的矩阵。

将偏向量初始化为零。 - np.zeros((a,b))用零初始化矩阵(a,b)。

代码语言:javascript
复制
def initialize_parameters( n_x , n_h ,n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量

    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))

    #使用断言确保我的数据格式是正确的
    assert(W1.shape == ( n_h , n_x ))
    assert(b1.shape == ( n_h , 1 ))
    assert(W2.shape == ( n_y , n_h ))
    assert(b2.shape == ( n_y , 1 ))

    parameters = {"W1" : W1,
                  "b1" : b1,
                  "W2" : W2,
                  "b2" : b2 }

    return parameters

测试一下我们的代码:

代码语言:javascript
复制
#测试initialize_parameters
print("=========================测试initialize_parameters=========================")    
n_x , n_h , n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x , n_h , n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

结果如下:

代码语言:javascript
复制
=========================测试initialize_parameters=========================
W1 = [[-0.00416758 -0.00056267]
 [-0.02136196  0.01640271]
 [-0.01793436 -0.00841747]
 [ 0.00502881 -0.01245288]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
b2 = [[ 0.]]

循环

前向传播

我们现在要实现前向传播函数forward_propagation()。 我们可以使用sigmoid()函数,也可以使用np.tanh()函数。 步骤如下:

  • 使用字典类型的parameters(它是initialize_parameters() 的输出)检索每个参数。
  • 实现向前传播, 计算Z[1],A[1],Z[2]Z[1],A[1],Z[2]Z^{[1]}, A^{[1]}, Z^{[2]} 和 A[2]A[2]A^{[2]}( 训练集里面所有例子的预测向量)。
  • 反向传播所需的值存储在“cache”中,cache将作为反向传播函数的输入。
代码语言:javascript
复制
def forward_propagation( X , parameters ):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出

    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    #前向传播计算A2
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1,X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}

    return (A2, cache)

测试一下我的这个功能:

代码语言:javascript
复制
#测试forward_propagation
print("=========================测试forward_propagation=========================") 
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))

测试结果如下:

代码语言:javascript
复制
=========================测试forward_propagation=========================
-0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852

现在我们已经计算了A[2]A[2]A^{[2]},a[2](i)a[2](i)a^{[2](i)}包含了训练集里每个数值,现在我们就可以构建成本函数了。

计算损失

计算成本的公式如下:

J=−1m∑i=0m(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))(6)(6)J=−1m∑i=0m(y(i)log⁡(a[2](i))+(1−y(i))log⁡(1−a[2](i)))

J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6} 有很多的方法都可以计算交叉熵损失,比如下面的这个公式,我们在python中可以这么实现: −∑i=0my(i)log(a[2](i))(举例)(举例)−∑i=0my(i)log⁡(a[2](i))- \sum\limits_{i=0}^{m} y^{(i)}\log(a^{[2](i)})\tag{举例}:

代码语言:javascript
复制
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs)                # 不需要使用循环就可以直接算出来。

当然,你也可以使用np.multiply()然后使用np.sum()或者直接使用np.dot() 现在我们正式开始构建计算成本的函数:

代码语言:javascript
复制
def compute_cost(A2,Y,parameters):
    """
    计算方程(6)中给出的交叉熵成本,

    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量

    返回:
         成本 - 交叉熵成本给出方程(13)
    """

    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]

    #计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))

    assert(isinstance(cost,float))

    return cost

测试一下我们的成本函数:

代码语言:javascript
复制
#测试compute_cost
print("=========================测试compute_cost=========================") 
A2 , Y_assess , parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2,Y_assess,parameters)))

测试结果如下:

代码语言:javascript
复制
=========================测试compute_cost=========================
cost = 0.6929198937761266

使用正向传播期间计算的cache,现在可以利用它实现反向传播。

现在我们要开始实现函数backward_propagation()。

向后传播

  说明:反向传播通常是深度学习中最难(数学意义)部分,为了帮助你,这里有反向传播讲座的幻灯片, 由于我们正在构建向量化实现,因此我们将需要使用这下面的六个方程:

Summary of gradient desent
Summary of gradient desent

为了计算dZ1,里需要计算 g[1]′(Z[1])g[1]′(Z[1])g^{[1]'}(Z^{[1]}), g[1](...)g[1](...)g^{[1]}(...) 是tanh激活函数,如果a=g[1](z)a=g[1](z)a = g^{[1]}(z) 那么g[1]′(z)=1−a2g[1]′(z)=1−a2g^{[1]'}(z) = 1-a^2。所以我们需要使用 (1 - np.power(A1, 2))来计算g[1]′(Z[1])g[1]′(Z[1])g^{[1]'}(Z^{[1]}) 。

代码语言:javascript
复制
def backward_propagation(parameters,cache,X,Y):
    """
    使用上述说明搭建反向传播函数。

    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)

    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]

    W1 = parameters["W1"]
    W2 = parameters["W2"]

    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2= A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2 }

    return grads

测试一下反向传播函数:

代码语言:javascript
复制
#测试backward_propagation
print("=========================测试backward_propagation=========================")
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))

测试结果如下:

代码语言:javascript
复制
=========================测试backward_propagation=========================
dW1 = [[ 0.01018708 -0.00708701]
 [ 0.00873447 -0.0060768 ]
 [-0.00530847  0.00369379]
 [-0.02206365  0.01535126]]
db1 = [[-0.00069728]
 [-0.00060606]
 [ 0.000364  ]
 [ 0.00151207]]
dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
db2 = [[ 0.06589489]]

反向传播完成了,我们开始对参数进行更新

更新参数

我们需要使用(dW1, db1, dW2, db2)来更新(W1, b1, W2, b2)。 更新算法如下: θ=θ−α∂J∂θθ=θ−α∂J∂θ \theta = \theta - \alpha \frac{\partial J }{ \partial \theta }

  • αα\alpha:学习速率
  • θθ\theta :参数

我们需要选择一个良好的学习速率,我们可以看一下下面这两个图(由Adam Harley提供):

sgd
sgd
sgd_bad
sgd_bad

上面两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。

代码语言:javascript
复制
def update_parameters(parameters,grads,learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数

    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率

    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1,W2 = parameters["W1"],parameters["W2"]
    b1,b2 = parameters["b1"],parameters["b2"]

    dW1,dW2 = grads["dW1"],grads["dW2"]
    db1,db2 = grads["db1"],grads["db2"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

测试一下update_parameters():

代码语言:javascript
复制
#测试update_parameters
print("=========================测试update_parameters=========================")
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

测试结果如下:

代码语言:javascript
复制
=========================测试update_parameters=========================
W1 = [[-0.00643025  0.01936718]
 [-0.02410458  0.03978052]
 [-0.01653973 -0.02096177]
 [ 0.01046864 -0.05990141]]
b1 = [[ -1.02420756e-06]
 [  1.27373948e-05]
 [  8.32996807e-07]
 [ -3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
b2 = [[ 0.00010457]]

整合

我们现在把上面的东西整合到nn_model()中,神经网络模型必须以正确的顺序使用先前的功能。

代码语言:javascript
复制
def nn_model(X,Y,n_h,num_iterations,print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值

    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """

    np.random.seed(3) #指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    parameters = initialize_parameters(n_x,n_h,n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    for i in range(num_iterations):
        A2 , cache = forward_propagation(X,parameters)
        cost = compute_cost(A2,Y,parameters)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters(parameters,grads,learning_rate = 0.5)

        if print_cost:
            if i%1000 == 0:
                print("第 ",i," 次循环,成本为:"+str(cost))
    return parameters

测试nn_model():

代码语言:javascript
复制
#测试nn_model
print("=========================测试nn_model=========================")
X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

测试结果如下:

代码语言:javascript
复制
=========================测试nn_model=========================
W1 = [[-4.18494482  5.33220319]
 [-7.52989354  1.24306197]
 [-4.19295428  5.32631786]
 [ 7.52983748 -1.24309404]]
b1 = [[ 2.32926815]
 [ 3.7945905 ]
 [ 2.33002544]
 [-3.79468791]]
W2 = [[-6033.83672179 -6008.12981272 -6033.10095329  6008.06636901]]
b2 = [[-52.66607704]]

参数更新完了我们就可以来进行预测了。

预测

构建predict()来使用模型进行预测, 使用向前传播来预测结果。 predictions = y预测={10激活值>0.5其他y预测={1激活值>0.50其他y_{预测} = \begin{cases} 1 & 激活值> 0.5 \\ 0 & \text{其他} \end{cases}

代码语言:javascript
复制
def predict(parameters,X):
    """
    使用学习的参数,为X中的每个示例预测一个类

    参数:
        parameters - 包含参数的字典类型的变量。
        X - 输入数据(n_x,m)

    返回
        predictions - 我们模型预测的向量(红色:0 /蓝色:1)

     """
    A2 , cache = forward_propagation(X,parameters)
    predictions = np.round(A2)

    return predictions

测试一下predict

代码语言:javascript
复制
#测试predict
print("=========================测试predict=========================")

parameters, X_assess = predict_test_case()

predictions = predict(parameters, X_assess)
print("预测的平均值 = " + str(np.mean(predictions)))

测试结果:

代码语言:javascript
复制
=========================测试predict=========================
预测的平均值 = 0.666666666667

现在我们把所有的东西基本都做完了,我们开始正式运行。


正式运行

代码语言:javascript
复制
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

运行结果:

代码语言:javascript
复制
第  0  次循环,成本为:0.6930480201239823
第  1000  次循环,成本为:0.28808329356901835
第  2000  次循环,成本为:0.25438549407324496
第  3000  次循环,成本为:0.23386415038952196
第  4000  次循环,成本为:0.22679248744854008
第  5000  次循环,成本为:0.22264427549299015
第  6000  次循环,成本为:0.21973140404281316
第  7000  次循环,成本为:0.21750365405131294
第  8000  次循环,成本为:0.21950396469467315
第  9000  次循环,成本为:0.2185709575018246
准确率: 90%
resulat
resulat

更改隐藏层节点数量

我们上面的实验把隐藏层定为4个节点,现在我们更改隐藏层里面的节点数量,看一看节点数量是否会对结果造成影响。

代码语言:javascript
复制
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i + 1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations=5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
    print ("隐藏层的节点数量: {}  ,准确率: {} %".format(n_h, accuracy))

打印结果:

代码语言:javascript
复制
隐藏层的节点数量: 1  ,准确率: 67.5 %
隐藏层的节点数量: 2  ,准确率: 67.25 %
隐藏层的节点数量: 3  ,准确率: 90.75 %
隐藏层的节点数量: 4  ,准确率: 90.5 %
隐藏层的节点数量: 5  ,准确率: 91.25 %
隐藏层的节点数量: 20  ,准确率: 90.0 %
隐藏层的节点数量: 50  ,准确率: 90.75 %
units
units

较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。 最好的隐藏层大小似乎在n_h = 5附近。实际上,这里的值似乎很适合数据,而且不会引起过度拟合。 我们还将在后面学习有关正则化的知识,它允许我们使用非常大的模型(如n_h = 50),而不会出现太多过度拟合。


【可选】探索

  • 当改变sigmoid激活或ReLU激活的tanh激活时会发生什么?
  • 改变learning_rate的数值会发生什么
  • 如果我们改变数据集呢?
代码语言:javascript
复制
# 数据集
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()

datasets = {"noisy_circles": noisy_circles,
            "noisy_moons": noisy_moons,
            "blobs": blobs,
            "gaussian_quantiles": gaussian_quantiles}

dataset = "noisy_moons"

X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])

if dataset == "blobs":
    Y = Y % 2

plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral)

#上一语句如出现问题请使用下面的语句:
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral)
new dataset
new dataset

完整代码

作业代码

代码语言:javascript
复制
# -*- coding: utf-8 -*-
"""
本文博客地址:https://blog.csdn.net/u013733326/article/details/79702148

@author: Oscar
"""

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。

np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。

X, Y = load_planar_dataset()
#plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # 训练集里面的数量

print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")

def layer_sizes(X , Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)

    返回:
     n_x - 输入层的数量
     n_h - 隐藏层的数量
     n_y - 输出层的数量
    """
    n_x = X.shape[0] #输入层
    n_h = 4 #,隐藏层,硬编码为4
    n_y = Y.shape[0] #输出层

    return (n_x,n_h,n_y)

def initialize_parameters( n_x , n_h ,n_y):
    """
    参数:
        n_x - 输入节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量

    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))

    #使用断言确保我的数据格式是正确的
    assert(W1.shape == ( n_h , n_x ))
    assert(b1.shape == ( n_h , 1 ))
    assert(W2.shape == ( n_y , n_h ))
    assert(b2.shape == ( n_y , 1 ))

    parameters = {"W1" : W1,
                  "b1" : b1,
                  "W2" : W2,
                  "b2" : b2 }

    return parameters

def forward_propagation( X , parameters ):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出

    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    #前向传播计算A2
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1,X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}

    return (A2, cache)

def compute_cost(A2,Y,parameters):
    """
    计算方程(6)中给出的交叉熵成本,

    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量

    返回:
         成本 - 交叉熵成本给出方程(13)
    """

    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]

    #计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))

    assert(isinstance(cost,float))

    return cost

def backward_propagation(parameters,cache,X,Y):
    """
    使用上述说明搭建反向传播函数。

    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)

    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]

    W1 = parameters["W1"]
    W2 = parameters["W2"]

    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2= A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2 }

    return grads

def update_parameters(parameters,grads,learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数

    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率

    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1,W2 = parameters["W1"],parameters["W2"]
    b1,b2 = parameters["b1"],parameters["b2"]

    dW1,dW2 = grads["dW1"],grads["dW2"]
    db1,db2 = grads["db1"],grads["db2"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

def nn_model(X,Y,n_h,num_iterations,print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值

    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """

    np.random.seed(3) #指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    parameters = initialize_parameters(n_x,n_h,n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    for i in range(num_iterations):
        A2 , cache = forward_propagation(X,parameters)
        cost = compute_cost(A2,Y,parameters)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters(parameters,grads,learning_rate = 0.5)

        if print_cost:
            if i%1000 == 0:
                print("第 ",i," 次循环,成本为:"+str(cost))
    return parameters

def predict(parameters,X):
    """
    使用学习的参数,为X中的每个示例预测一个类

    参数:
        parameters - 包含参数的字典类型的变量。
        X - 输入数据(n_x,m)

    返回
        predictions - 我们模型预测的向量(红色:0 /蓝色:1)

     """
    A2 , cache = forward_propagation(X,parameters)
    predictions = np.round(A2)

    return predictions

parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

"""
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i + 1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations=5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
    print ("隐藏层的节点数量: {}  ,准确率: {} %".format(n_h, accuracy))
"""

testCases.py

代码语言:javascript
复制
#-*- coding: UTF-8 -*-
"""
# WANGZHE12
"""
import numpy as np

def layer_sizes_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(5, 3)
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess

def initialize_parameters_test_case():
    n_x, n_h, n_y = 2, 4, 1
    return n_x, n_h, n_y

def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    return X_assess, parameters

def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    a2 = (np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]))

    return a2, Y_assess, parameters

def backward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    cache = {'A1': np.array([[-0.00616578,  0.0020626 ,  0.00349619],
         [-0.05225116,  0.02725659, -0.02646251],
         [-0.02009721,  0.0036869 ,  0.02883756],
         [ 0.02152675, -0.01385234,  0.02599885]]),
  'A2': np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]),
  'Z1': np.array([[-0.00616586,  0.0020626 ,  0.0034962 ],
         [-0.05229879,  0.02726335, -0.02646869],
         [-0.02009991,  0.00368692,  0.02884556],
         [ 0.02153007, -0.01385322,  0.02600471]]),
  'Z2': np.array([[ 0.00092281, -0.00056678,  0.00095853]])}
    return parameters, cache, X_assess, Y_assess

def update_parameters_test_case():
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
 'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
 'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
 'b2': np.array([[  9.14954378e-05]])}

    grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
        [ 0.00082222, -0.00700776],
        [-0.00031831,  0.0028636 ],
        [-0.00092857,  0.00809933]]),
 'dW2': np.array([[ -1.75740039e-05,   3.70231337e-03,  -1.25683095e-03,
          -2.55715317e-03]]),
 'db1': np.array([[  1.05570087e-07],
        [ -3.81814487e-06],
        [ -1.90155145e-07],
        [  5.46467802e-07]]),
 'db2': np.array([[ -1.08923140e-05]])}
    return parameters, grads

def nn_model_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    return X_assess, Y_assess

def predict_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
     'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
     'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
     'b2': np.array([[  9.14954378e-05]])}
    return parameters, X_assess

planar_utils.py

代码语言:javascript
复制
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)


def sigmoid(x):
    s = 1/(1+np.exp(-x))
    return s

def load_planar_dataset():
    np.random.seed(1)
    m = 400 # number of examples
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j

    X = X.T
    Y = Y.T

    return X, Y

def load_extra_datasets():  
    N = 200
    noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
    noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
    blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
    gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
    no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

    return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年03月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业 - 带有一个隐藏层的平面数据分类
    • 声明
      • 开始之前
        • 准备软件包
          • 加载和查看数据集
            • 查看简单的Logistic回归的分类效果
              • 搭建神经网络
                • 定义神经网络结构
                • 初始化模型的参数
                • 循环
                • 整合
                • 预测
              • 正式运行
                • 更改隐藏层节点数量
                  • 【可选】探索
                  • 完整代码
                    • 作业代码
                      • testCases.py
                        • planar_utils.py
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档