首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【OpenCV入门之十九】Harris与Shi-Tomasi角点检测

【OpenCV入门之十九】Harris与Shi-Tomasi角点检测

作者头像
小白学视觉
发布2019-05-30 19:23:50
1K0
发布2019-05-30 19:23:50
举报

学习计算机视觉最重要的能力应该就是编程了,为了帮助小伙伴尽快入门计算机视觉,小白准备了【OpenCV入门】系列。新的一年文章的内容进行了很大的完善,主要是借鉴了更多大神的文章,希望让小伙伴更加容易理解。如果小伙伴觉得有帮助,请点击一下文末的“在看”鼓励一下小白。

角点检测是计算机视觉系统中用来获取图像特征的一种方法。我们都常说,这幅图像很有特点,但是一问他到底有哪些特点,或者这幅图有哪些特征可以让你一下子就识别出该物体,你可能就说不出来了。其实说图像的特征,你可以尝试说一下这幅图有几个矩形啊几个圆形啊,有几条直线啊,当然啦,你也可以说一下有几个角点。

什么是角点?

角点通常被定义为两条边的交点。比如,三角形有三个角,矩形有四个角,这些就是角点,也是他们叫做矩形、三角形的特征,我们看到一些几何图形具有三个角,那么我们便可以脱口而出说这是一个三角形。

上面所说的是严格意义上的角点,但是从广义来说,角点指的是拥有特定特征的图像点,这些特征点在图像中有具体的坐标,并具有某些数学特征(比如局部最大或最小的灰度)。

图像特征类型可以被分为三种:

  • 边缘
  • 角点(感兴趣关键点)
  • 斑点(感兴趣区域)

角点是个很特殊的存在。如果某一点在任意方向的一个微小的变动都会引起灰度很大的变化,那么我们就可以把该点看做是角点。

Harris 角点检测

Harris角点检测是一种直接基于灰度图的角点提取算法,稳定性高,尤其对L型角点(也就是直角)检测精度高。缺点也是明显的,就是运算速度慢。

OpenCV使用的相应函数是

void cornerHarris( InputArray src, OutputArray dst, int blockSize,int ksize,
                    double k, int borderType = BORDER_DEFAULT );

下面给出相应的检测代码。

#include <opencv2/opencv.hpp>  
#include "opencv2/highgui/highgui.hpp"  
#include "opencv2/imgproc/imgproc.hpp"  

using namespace cv;
using namespace std;
 

Mat g_srcImage, g_srcImage1, g_grayImage;
int thresh = 30; //当前阈值  
int max_thresh = 175; //最大阈值  

void on_CornerHarris(int, void*);//回调函数  

int main(int argc, char** argv)
{
    g_srcImage = imread("lol19.jpg", 1);
    if (!g_srcImage.data)
    {
        printf("读取图片错误! \n");
        return -1;
    }
    imshow("原始图", g_srcImage);
    g_srcImage1 = g_srcImage.clone();

    //存留一张灰度图  
    cvtColor(g_srcImage1, g_grayImage, CV_BGR2GRAY);

    //创建窗口和滚动条  
    namedWindow("角点检测", CV_WINDOW_AUTOSIZE);
    createTrackbar("阈值: ", "角点检测", &thresh, max_thresh, on_CornerHarris);

    //调用一次回调函数,进行初始化  
    on_CornerHarris(0, 0);

    waitKey(0);
    return(0);
}


void on_CornerHarris(int, void*)
{
    Mat dstImage;//目标图  
    Mat normImage;//归一化后的图  
    Mat scaledImage;//线性变换后的八位无符号整型的图  

    //置零当前需要显示的两幅图,即清除上一次调用此函数时他们的值  
    dstImage = Mat::zeros(g_srcImage.size(), CV_32FC1);
    g_srcImage1 = g_srcImage.clone();

    //进行角点检测  
    //第三个参数表示邻域大小,第四个参数表示Sobel算子孔径大小,第五个参数表示Harris参数
    cornerHarris(g_grayImage, dstImage, 2, 3, 0.04, BORDER_DEFAULT);

    // 归一化与转换  
    normalize(dstImage, normImage, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
    convertScaleAbs(normImage, scaledImage);//将归一化后的图线性变换成8位无符号整型   

    // 将检测到的,且符合阈值条件的角点绘制出来  
    for (int j = 0; j < normImage.rows; j++)
    {
        for (int i = 0; i < normImage.cols; i++)
        {
            //Mat::at<float>(j,i)获取像素值,并与阈值比较
            if ((int)normImage.at<float>(j, i) > thresh + 80)
            {
                circle(g_srcImage1, Point(i, j), 5, Scalar(10, 10, 255), 2, 8, 0);
                circle(scaledImage, Point(i, j), 5, Scalar(0, 10, 255), 2, 8, 0);
            }
        }
    }
    
    imshow("角点检测", g_srcImage1);
    imshow("角点检测2", scaledImage);

}

先看看原始图

开始检测,我把阈值设为30,检测到角点还挺多的。

我把阈值进一步提高,角点变少了。认真观察一下,是不是检测到的点都是一些亮度明显变化的临界点?比如由黑变白的边界点。

Shi-Tomasi角点检测

除了上述的Harris角点检测方法,我们还可以采用Shi-Tomasi方法进行角点检测。Shi-Tomsi算法是Harris算法的加强版,性能当然也有相应的提高。

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src, src_gray;

int maxCorners = 23;
int maxTrackbar = 100;

RNG rng(12345);  //RNG:random number generator,随机数产生器
char* source_window = "Image";

void goodFeaturesToTrack_Demo(int, void*);

int main()
{
    //转化为灰度图
    src = imread("lol19.jpg", 1);
    cvtColor(src, src_gray, CV_BGR2GRAY);

    namedWindow(source_window, CV_WINDOW_AUTOSIZE);

    //创建trackbar
    createTrackbar("MaxCorners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

    imshow(source_window, src);

    goodFeaturesToTrack_Demo(0, 0);

    waitKey(0);
    return(0);
}

void goodFeaturesToTrack_Demo(int, void*)
{
    if (maxCorners < 1) { maxCorners = 1; }

    //初始化 Shi-Tomasi algorithm的一些参数
    vector<Point2f> corners;
    double qualityLevel = 0.01;
    double minDistance = 10;
    int blockSize = 3;
    bool useHarrisDetector = false;
    double k = 0.04;

    //给原图做一次备份
    Mat copy;
    copy = src.clone();

    // 角点检测
    goodFeaturesToTrack(src_gray,corners,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k);

    //画出检测到的角点
    cout << "** Number of corners detected: " << corners.size() << endl;
    int r = 4;
    for (int i = 0; i < corners.size(); i++)
    {
        circle(copy, corners[i], r, Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
            rng.uniform(0, 255)), -1, 8, 0);
    }

    namedWindow(source_window, CV_WINDOW_AUTOSIZE);
    imshow(source_window, copy);
}
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-05-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档