tf.group()用于组合多个操作

tf.group()用于创造一个操作,可以将传入参数的所有操作进行分组。API手册如:

tf.group(
    *inputs,
    **kwargs
)

ops = tf.group(tensor1, tensor2,...) 其中*inputs是0个或者多个用于组合tensor,一旦ops完成了,那么传入的tensor1,tensor2,...等等都会完成了,经常用于组合一些训练节点,如在Cycle GAN中的多个训练节点,例子如:

generator_train_op = tf.train.AdamOptimizer(g_loss, ...)
discriminator_train_op = tf.train.AdamOptimizer(d_loss,...)
train_ops = tf.groups(generator_train_op ,discriminator_train_op)

with tf.Session() as sess:
  sess.run(train_ops)
  # 一旦运行了train_ops,那么里面的generator_train_op和discriminator_train_op都将被调用

注意的是,tf.group()返回的是个操作,而不是值,如果你想下面一样用,返回的将不是值

a = tf.Variable([5])
b = tf.Variable([6])
c = a+b
d = a*b
e = a/b
ops = tf.group(c,d,e)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    ee = sess.run(ops)

转载地址:https://blog.csdn.net/LoseInVain/article/details/81703786

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券