前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手把手教你比较两个模型的预测能力

手把手教你比较两个模型的预测能力

作者头像
百味科研芝士
发布2019-07-22 15:44:45
3.7K0
发布2019-07-22 15:44:45
举报
文章被收录于专栏:百味科研芝士

各位科研芝士的朋友,大家好。最近学习到用NRI进行模型比较,起初当听到NRI这个词的时候,我的表情可能是这样的。

其实当时我还真不知道这个概念,不过奈何我们大家都爱学习,接着一顿操作猛如虎,来学习一个这个知识点,今天就把自己学习的一点,分享给大家,希望对大家能有帮助。

概念扫盲

NRI

全称为Net Reclassification Index,是这三个单词的英文首字母缩写,代表净重新分类指数。

作用

一般情况,在预测结局事件的时候,不同的人可能会建立不同的预测模型,当我们去评价两个模型的好坏或者预测能力的强弱的时候,你可能会说AUC呀,其实除了AUC,还有NRI也是用来比较两个模型预测能力的。

区分度、灵敏度和特异度

一个好的预测模型应该能针对某个结局,把风险高低区分开来,这是区分度(discrimination)。

区分度一般以我们熟悉的ROC曲线下面积(AUC)来评价,或称C统计量(C-statistics)。AUC越高,模型对高低风险人群的区分度越好。一个广泛接受的评判标准是,AUC在0.6以下为低区分度,0.6 – 0.75 是中区分度,0.75以上为高区分度。而在诊断试验中,通常根据检验指标的判断结果和金标准诊断结果,整理成一个2×2的表格,如下表所示,并以此来计算诊断试验中两个比较重要的指标,即灵敏度和特异度。

灵敏度=A/(A+C),即真阳性率,反映了将实际有病的人正确地判定为阳性的比例。

特异度=D/(B+D),即真阴性率,反映了将实际无病的人正确地判定为阴性的比例。

以灵敏度为纵坐标,1-特异度为横坐标绘制图形,即可得到我们熟悉的受试者工作特征曲线(Receiver Operating Characteristic curve,ROC曲线)。

净重新分类指数NRI

相对于ROC曲线及其AUC,NRI更关注在某个设定的切点处,两个模型把研究对象进行正确分类的数量上的变化,常用来比较两个模型预测能力的准确性。首先根据结局事件,比如是否患病,将病人按照真实的患病情况分为两组,即患者组和非患者组,旧模型会把研究对象分类为患者和非患者,然后在旧模型的基础上引入新的指标构成新模型,新模型会把研究对象再重新分类成患者和非患者。

那么,便会出现原本在旧模型中被错分,但在新模型中得到了纠正,分入了正确的分组,同样也有一部分研究对象,原本在旧模型中分类正确,但在新模型中却被错分的情况,这个时候,我们利用这种重新分类的现象,来计算净重新分类指数NRI。

NRI计算

如下两个表所示,表一为一般情况,表二为特定情况,(一共595个样本,其中180个位患者组,415个位非患者组),我们将研究对象按照真实的患病情况分为两组,即患者组和非患者组,然后分别在这两个分组下,根据新、旧模型的预测分类结果,整理成两个2×2的表格。

表一

NRI= (B1-C1) / N1+(C2-B2) / N2

表二

根据上述NRI公式计算如下:

NRI= (B1-C1) / N1+(C2-B2) / N2=(30-8)/180+(32-15)/415=16.3%

NRI>0,提示在加入了新的生物标志物后,新模型的预测能力有所改善,正确分类的比例提高了16.3%。

NRI解释

若NRI>0,则为正改善,说明新模型比旧模型的预测能力有所改善;若NRI<0,则为负改善,新模型预测能力下降;若NRI=0,则认为新模型没有改善。

接着我们看看在R里面如何实现呢?

1.安装并加载包

2.借助survival包中的数据集,进行数据选取

最后生成的egData如下:

最后一列event数据集表示的是病人的生存状态,1代表存活,0代表死亡。

3.根据event列构建logistic回归模型

可以看到构建的两个模型,第二个模型比第一个模型多了一个protime指标。

4. 采用PredictABEL包,一行代码计算NRI值

主要的函数为reclassification,第一个参数为我们的数据集,第二个参数为二分类的列,此处21代表的event列,predrisk1和predrisk2分别代表的为拟合的两个模型,这里分别填的为pstd和pnew,即通过glm函数拟合的logistic模型,最后一个cutoff必须要输入(0,X1,X2,1),其中0,1不可缺少,然后选择合适的cutoff值,此处我输入的为0.6.

5.结果展示:

对于这个结果,我们主要看IDI值,主要指的是发生和未发生结局事件样本的平均预测风险差异,新模型较旧模型中提高了0.44%,并且给出了p值,表示二者模型几乎没差异。

Ok,今天的推文就到这,我们主要分享了NRI的基本概念和基于R语言计算NRI,希望能对大家有所帮助,最后,欢迎大家留言,有不正确的地方,也请大家留言指正。

—END—

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-07-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 百味科研芝士 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档