点云拼接

点云拼接,配准,注册说的是同一个概念,就是寻找对齐不同点云之间的空间变换的过程。找到这种转换的目的包括将多个点云拼接为全局一致的模型,并将新的测量值映射到已知的点云以识别特征或估计其姿势

寻找不同点云空间变换矩阵有两种方法:

1、拍摄图像或使用扫描设备扫描时记录每个点云的相对位姿,即平移矩阵、旋转矩阵。直接根据平移和旋转矩阵对点云进行变换、拼接。此种方法要求拍摄图像或扫描点云数据时记录相机或扫描设备与每个点云的相对位姿,从而可求出每个点云之间相对位姿。但一般情况下我们不可得到或得不到精确的空间变换矩阵。所以,我们常用以下方法。

2、提取点云特征,进行特征匹配,找到点云重叠部分进而可求得点云之间空间变换矩阵。特征提取有很多种方法,公众号前面也有相关文章,此处不详细介绍。可能以后会将这一部分专门整理一下。

拼接成功的判定

拼接成功的判定,最关键的是“成功”的定义。一般是计算两个点云的重叠区域的大小,重叠区域可以根据点云特征来加权计算。当重叠区域面积或者比例大于一定的阈值,就判定为成功。需要注意的是,有时候用户期望的变换,并不是“最好的”。

如何融合已经拼接的数据?

拼接好的点云数据,会有很多重叠部分,对于重叠部分,一般由两种方法:平均融合和去除重叠。顾名思义,平均融合就是将重叠部分的点平均起来。去除重叠就是在重叠部分只取其中一帧的数据。

·多帧点云,往往由于系统误差原因,重叠部分的点是不能完美重合在一起的。多帧数据平均融合,会损失掉一些数据细节。去除重叠,只取一帧的做法,可以保留住点云的细节。

·点云去除重叠,需要有个重叠判定条件,一般是设置一个点云的影响范围,范围内的点会被过滤掉。就如同一个筛子一样,过滤范围越大,筛子的缝隙越小。一般可以取点云的平均间距作为过滤范围,如果点云误差比较大,可以增大过滤范围。避免出现不同帧的点云在重叠处相互渗透的情况,相互渗透会产生噪音。但去除重叠的时候,在重叠交界处,会有接缝痕迹。

如何去掉点云的重影:

多帧点云注册去除重叠后,得到一个整体点云后,有时候会出现局部点云有重影的情况。常见的原因是数据本身有误差,有微小形变,刚体变换不可能把多帧点云完全对齐。根据点云处理的工作流程,下面介绍几种去除重影的方法:

1)非刚体ICP注册:既然数据有误差,刚体变换无法完全对齐点云,可以引入非刚体注册。对于两帧数据的注册,可以应用非刚体ICP。

2)非刚体全局注册:对于多帧数据的注册,可以应用非刚体全局注册。

3)点云去除重叠:在点云去除重叠的时候,也可以融合重叠接缝处的误差痕迹。具体效果可以参考“如何融合已经注册对齐的数据”部分的讲解。

4)点云去除重影:如果用户已经得到了一个整体点云,并且有了重影,没有办法应用非刚体注册。那么可以先检测出点云的重影部分,再删除掉这些局部点云。

THE END

原文发布于微信公众号 - 点云PCL(dianyunPCL)

原文发表时间:2018-08-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券