前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >JDK1.8源码分析之HashMap

JDK1.8源码分析之HashMap

作者头像
九州暮云
发布2019-08-21 11:35:04
3500
发布2019-08-21 11:35:04
举报
文章被收录于专栏:九州牧云

概述

HashMap是一种Map,HashMap仅是一种Map的实现版本,下面的图片展示了java中Map的一些实现版本:

输入图片说明
输入图片说明

它具有以下特点:

  • HashMap将根据key的hashCode值来找到存储value的位置,如果hash函数比较完美的话,因为可以很快的找到key对应的value存储的位置,所以具有很高的效率。
  • HashMap因为是基于key的hashCode值来存储value的,所以遍历HashMap不会保证它的顺序和插入时的顺序一致。
  • HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
  • HashMap是非线程安全的,只适用于单线程环境下,多线程环境下可以采用concurrent并发包下的concurrentHashMap,或者Collections.synchronizedMap()方法对Map进行同步,或者使用ReentrantLock重入锁对HashMap的读写操作进行同步。
  • HashMap 实现了Serializable接口,因此它支持序列化,实现了Cloneable接口,能被克隆。
  • HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
  • Java8中对此类底层实现进行了优化,比如引入了红黑树的结构以解决哈希碰撞。

HashMap的数据结构

在java中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造,HashMap也不例外。HashMap实际上是一个"链表散列"的数据结构,即数组和链表的结合体。

输入图片说明
输入图片说明

如图,HashMap的主结构类似于一个数组,添加值时通过key确定储存位置,每个位置是一个Node(图中黑点)的数据结构,该结构可组成链表。当发生冲突时,相同hash值的键值对会组成链表。

这种数组+链表的组合形式大部分情况下都能有不错的性能效果,java6、7就是这样设计的。然而,在极端情况下,一组(比如经过精心设计的)键值对都发生了冲突,这时的哈希结构就会退化成一个链表,使HashMap性能急剧下降。

所以在java8中,HashMap的结构实现变为数组+链表+红黑树。如图:

输入图片说明
输入图片说明

从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。

三大集合与迭代子

HashMap使用三大集合和三种迭代子来轮询其Key、Value和Entry对象,其使用方法如下所示:

代码语言:javascript
复制
public class HashMapExam {
    public static void main(String[] args) {
        Map<Integer, String> map = new HashMap<>(16);
        for (int i = 0; i < 15; i++) {
            map.put(i, new String(new char[]{(char) ('A'+ i)}));
        }

        System.out.println("======keySet=======");
        Set<Integer> set = map.keySet();
        Iterator<Integer> iterator = set.iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }

        System.out.println("======values=======");
        Collection<String> values = map.values();
        Iterator<String> stringIterator=values.iterator();
        while (stringIterator.hasNext()) {
            System.out.println(stringIterator.next());
        }

        System.out.println("======entrySet=======");
        for (Map.Entry<Integer, String> entry : map.entrySet()) {
            System.out.println(entry);
        }
    }
}

源码分析

下面让我们看看源码:

代码语言:javascript
复制
    //  默认的初始容量(容量为表中桶数)是16,且实际容量必须是2的整数次幂.  
    //aka有時候也會寫做a.k.a.就是Also known as,「也叫…」的意思
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
    static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默认加载因子为0.75(只有当表达到3/4满时,才会再散列),这个因子在时间和空间代价之间达到了平衡.更高的因子可以降低表所需的空间,但是会增加查找代价,而查找是我们使用最频繁使用的操作了.
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //链表转为红黑树的临界值
    static final int TREEIFY_THRESHOLD = 8;
    static final int UNTREEIFY_THRESHOLD = 6;
    static final int MIN_TREEIFY_CAPACITY = 64;

    // 存储数据的Node数组,长度是2的幂.    
    // HashMap采用链表法解决冲突,每一个Entry本质上是一个单向链表 
    //HashMap底层存储的数据结构,是一个Node数组.上面得知Node类为元素维护了一个单向链表.至此,HashMap存储的数据结构也就很清晰了:维护了一个数组,每个数组又维护了一个单向链表.之所以这么设计,考虑到遇到哈希冲突的时候,同index的value值就用单向链表来维护
    transient Node<K,V>[] table;
    // HashMap的底层数组中已用槽的数量 
    transient int size;
    // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子) 
    int threshold;

    // 负载因子实际大小
    final float loadFactor;

    // HashMap被改变的次数 
    transient int modCount;

    // 指定“容量大小”和“加载因子”的构造函数,是最基础的构造函数
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // HashMap的最大容量只能是MAXIMUM_CAPACITY                                       
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //负载因子须大于0
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        // 设置"负载因子"                                        
        this.loadFactor = loadFactor;
        // 设置"HashMap阈值",当HashMap中存储数据的数量达到threshold时,就需将HashMap的容量加倍    
        this.threshold = tableSizeFor(initialCapacity);
    }
    //上面的tableSizeFor有何用?
    //先抛出答案:tableSizeFor方法保证函数返回值是大于等于给定参数initialCapacity最小的2的幂次方的数值
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    //可以看出该方法是一系列的二进制位操作。先说明 |=的作用:a |= b 等同于 a = a|b。逐行分析tableSizeFor方法:
    //int n = cap - 1:给定的cap减1,为了避免参数cap本来就是2的幂次方,这样一来,经过后续的未操作的,cap将会变成2 * cap,是不符合我们预期的。
    //n |= n >>> 1:n >>> 1,n无符号右移1位,即n二进制最高位的1右移一位;n | (n >>> 1),导致的结果是n二进制的高2位值为1;        目前n的高1~2位均为1
    //n |= n >>> 2:n继续无符号右移2位.n | (n >>> 2),导致n二进制表示高3~4位经过运算值均为1;             目前n的高1~4位均为1。
    //n |= n >>> 4:n继续无符号右移4位.n | (n >>> 4),导致n二进制表示高5~8位经过运算值均为1;  目前n的高1~8位均为1.
    //n |= n >>> 8:n继续无符号右移8位.n | (n >>> 8),导致n二进制表示高9~16位经过运算值均为1;目前n的高1~16位均为1.
    //可以看出,无论给定cap(cap < MAXIMUM_CAPACITY )的值是多少,经过以上运算,其值的二进制所有位都会是1.再将其加1,这时候这个值一定是2的幂次方.当然如果经过运算值大于MAXIMUM_CAPACITY,直接选用MAXIMUM_CAPACITY.

为什么cap要保持为2的幂次方?

cap要保持为2的幂次主要与HashMap中数据存储有关。

在Java8中,HashMap中key的Hash值由Hash(key)方法(后面会详细分析)计算得来。

HashMap中存储数据table的index是由key的Hash值决定的。在HashMap存储数据的时候,我们期望数据能够均匀分布,以防止哈希冲突。自然而然我们就会想到去用%取余的操作来实现我们这一构想。

这里要了解到一个知识:取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作。

这也就解释了为什么一定要求cap要为2的幂次方。再来看看table的index的计算规则:

index = e.hash & (newCap - 1)

等价于:

index = e.hash % newCap

采用二进制位操作&,相对于%,能够提高运算效率,这就是cap的值被要求为2幂次的原因。

Node类

Node<K,V> 类是HashMap中的静态内部类,实现Map.Entry<K,V>接口。定义了key键、value值、next节点,也就是说元素之间构成了单向链表。

代码语言:javascript
复制
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

TreeNode类

红黑树结构包含前、后、左、右节点,以及标志是否为红黑树的字段。此结构是java8新加的。

代码语言:javascript
复制
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {}

        //以下省略其他方法
 }

hash方法

HashMap中table的index是由Key的哈希值决定的。HashMap并没有直接使用key的hashcode(),而是经过如下的运算:

代码语言:javascript
复制
static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

而之前我们提到index的运算规则是e.hash & (newCap - 1)。由于newCap是2的幂次,那么newCap - 1的高位应该全部为0。如果e.hash值只用自身的hashcode的话,那么index只会和e.hash的低位做&操作。这样一来,index的值就只有低位参与运算,高位毫无存在感,从而会带来哈希冲突的风险。所以在计算key的哈希值的时候,用其自身hashCode值与其低16位做异或操作。这也就让高位参与到index的计算中来了,即降低了哈希冲突的风险又不会带来太大的性能问题。

put方法

输入图片说明
输入图片说明

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

代码语言:javascript
复制
public V put(K key, V value) {
        // 对key的hashCode()做hash
        return putVal(hash(key), key, value, false, true);
    }

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
         // 步骤①:tab为空则调用resize()初始化创建
        if ((tab = table) == null || (n = tab.length) == 0)         
            n = (tab = resize()).length;
        // 步骤②:计算index,并对null做处理  
        //tab[i = (n - 1) & hash对应索引的第一个节点   
        if ((p = tab[i = (n - 1) & hash]) == null)
            // 无哈希冲突的情况下,将value直接封装为Node并赋值
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 步骤③:节点key存在,直接覆盖value
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                // 如果key相同,p赋值给e
                e = p;
            // 步骤④:判断该链为红黑树    
            else if (p instanceof TreeNode)
                 // 若p是红黑树类型,则调用putTreeVal方式赋值
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 步骤⑤:该链为链表    
            else {
                // index 相同的情况下
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        // 如果p的next为空,将新的value值添加至链表后面
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 如果链表长度大于8,链表转化为红黑树,执行插入
                            treeifyBin(tab, hash);
                        break;
                    }
                    // key相同则跳出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //就是移动指针方便继续取 p.next

                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                //根据规则选择是否覆盖value
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 步骤⑥:超过最大容量,就扩容
        if (++size > threshold)
            // size大于加载因子,扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }

在构造函数中最多也只是设置了initialCapacity、loadFactor的值,并没有初始化table,table的初始化工作是在put方法中进行的。

resize方法

扩容(resize)就是重新计算容量。向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

代码语言:javascript
复制
final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // table已存在
            if (oldCap >= MAXIMUM_CAPACITY) {
                // oldCap大于MAXIMUM_CAPACITY,threshold设置为int的最大值
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //newCap设置为oldCap的2倍并小于MAXIMUM_CAPACITY,且大于默认值, 新的threshold增加为原来的2倍
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            // threshold>0, 将threshold设置为newCap,所以要用tableSizeFor方法保证threshold是2的幂次方
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            // 默认初始化,cap为16,threshold为12。
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            // newThr为0,newThr = newCap * 0.75
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            // 新生成一个table数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            // oldTab 复制到 newTab
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                       // 链表只有一个节点,直接赋值
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        // e为红黑树的情况
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

remove方法

remove(key) 方法 和 remove(key,value) 方法都是通过调用removeNode的方法来实现删除元素的。

代码语言:javascript
复制
final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                // index 元素只有一个元素
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    // index处是一个红黑树
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    // index处是一个链表,遍历链表返回node
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 分不同情形删除节点
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

在JDK1.7及以前的版本中,HashMap里是没有红黑树的实现的,在JDK1.8中加入了红黑树是为了防止哈希表碰撞攻击,当链表链长度为8时,及时转成红黑树,提高map的效率。

如果某个桶中的记录过大的话(当前是TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的treemap实现来替换掉它。这样做的结果会更好,是O(logn),而不是糟糕的O(n)。它是如何工作的?前面产生冲突的那些KEY对应的记录只是简单的追加到一个链表后面,这些记录只能通过遍历来进行查找。但是超过这个阈值后HashMap开始将列表升级成一个二叉树,使用哈希值作为树的分支变量,如果两个哈希值不等,但指向同一个桶的话,较大的那个会插入到右子树里。如果哈希值相等,HashMap希望key值最好是实现了Comparable接口的,这样它可以按照顺序来进行插入。这对HashMap的key来说并不是必须的,不过如果实现了当然最好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,你就并别指望能获得性能提升了。

这个性能提升有什么用处?比方说恶意的程序,如果它知道我们用的是哈希算法,它可能会发送大量的请求,导致产生严重的哈希碰撞。然后不停的访问这些key就能显著的影响服务器的性能,这样就形成了一次拒绝服务攻击(DoS)。JDK 8中从O(n)到O(logn)的飞跃,可以有效地防止类似的攻击,同时也让HashMap性能的可预测性稍微增强了一些。

参考文章:Java 8系列之重新认识HashMap

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • HashMap的数据结构
  • 三大集合与迭代子
  • 源码分析
    • 为什么cap要保持为2的幂次方?
      • Node类
        • TreeNode类
          • hash方法
            • put方法
              • resize方法
                • remove方法
                相关产品与服务
                数据保险箱
                数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档