前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MLK | 特征工程系统化干货笔记+代码了解一下(中)

MLK | 特征工程系统化干货笔记+代码了解一下(中)

作者头像
Sam Gor
发布2019-09-09 17:21:48
6030
发布2019-09-09 17:21:48
举报
文章被收录于专栏:SAMshareSAMshare

时隔多日,终于把第二篇特征工程的学习内容给整出来了,上一篇主要是集中讲了特征理解和特征增强,可以点击回顾《MLK | 特征工程系统化干货笔记+代码了解一下(上)》,这一次会着重讲特征构建和特征选择。

? 目录

  • ? 特征理解
  • ? 特征增强
  • ? 特征构建
  • ✅ 特征选择
  • ? 特征转换(待更新)
  • ? 特征学习(待更新)

? 03 特征构建

如果我们对变量进行处理之后,效果仍不是非常理想,就需要进行特征构建了,也就是衍生新变量。

而在这之前,我们需要了解我们的数据集,先前两节中我们了解到了可以通过 data.infodata.describe() 来查看,同时结合数据等级(定类、定序、定距、定比)来理解变量。

? 基础操作

本小节中我们使用一个自定义数据集。

代码语言:javascript
复制
# 本次案例使用的数据集
import pandas as pd

X = pd.DataFrame({'city':['tokyo',None,'london','seattle','san fancisco','tokyo'],
                  'boolean':['y','n',None,'n','n','y'],
                  'ordinal_column':['somewhat like','like','somewhat like','like','somewhat like','dislike'],
                  'quantitative_column':[1,11,-.5,10,None,20]})
X

首先我们需要对分类变量进行填充操作,类别变量一般用众数或者特殊值来填充,回顾之前的内容,我们也还是采取Pipeline的方式来进行,因此可以事先基于TransformMixin基类来对填充的方法进行封装,然后直接在Pipeline中进行调用,代码可以参考:

代码语言:javascript
复制
# 填充分类变量(基于TransformerMixin的自定义填充器,用众数填充)
from sklearn.base import TransformerMixin

class CustomCategoryzImputer(TransformerMixin):
    def __init__(self, cols=None):
        self.cols = cols
        
    def transform(self, df):
        X = df.copy()
        for col in self.cols:
            X[col].fillna(X[col].value_counts().index[0], inplace=True)
        return X
    
    def fit(self, *_):
        return self  
    
    
# 调用自定义的填充器
cci = CustomCategoryzImputer(cols=['city','boolean'])
cci.fit_transform(X)

又或者利用 scikit-learn 的 Imputer类来实现填充,而这个类有一个 Strategy的方法自然就被继承过来用了,包含的有mean、median、most_frequent可供选择。

代码语言:javascript
复制
# 填充分类变量(基于Imputer的自定义填充器,用众数填充)
from sklearn.preprocessing import Imputer
class CustomQuantitativeImputer(TransformerMixin):
    def __init__(self, cols=None, strategy='mean'):
        self.cols = cols
        self.strategy = strategy
        
    def transform(self, df):
        X = df.copy()
        impute = Imputer(strategy=self.strategy)
        for col in self.cols:
            X[col] = impute.fit_transform(X[[col]])
        return X
    
    def fit(self, *_):
        return self
    
    
# 调用自定义的填充器
cqi = CustomQuantitativeImputer(cols = ['quantitative_column'], strategy='mean')
cqi.fit_transform(X)

对上面的两种填充进行流水线封装:

代码语言:javascript
复制
# 全部填充
from sklearn.pipeline import Pipeline

imputer = Pipeline([('quant',cqi),
                    ('category',cci)
])

imputer.fit_transform(X)

完成了分类变量的填充工作,接下来就需要对分类变量进行编码了(因为大多数的机器学习算法都是无法直接对类别变量进行计算的),一般有两种办法:独热编码以及标签编码。

1)独热编码

独热编码主要是针对定类变量的,也就是不同变量值之间是没有顺序大小关系的,我们一般可以使用 scikit_learn 里面的 OneHotEncoding来实现的,但我们这里还是使用自定义的方法来加深理解。

代码语言:javascript
复制
# 类别变量的编码(独热编码)
class CustomDummifier(TransformerMixin):
    def __init__(self, cols=None):
        self.cols = cols
        
    def transform(self, X):
        return pd.get_dummies(X, columns=self.cols)
    
    def fit(self, *_):
        return self
    

# 调用自定义的填充器
cd = CustomDummifier(cols=['boolean','city'])
cd.fit_transform(X)

2)标签编码

标签编码是针对定序变量的,也就是有顺序大小的类别变量,就好像案例中的变量ordinal_column的值(dislike、somewhat like 和 like 可以分别用0、1、2来表示),同样的可以写个自定义的标签编码器:

代码语言:javascript
复制
# 类别变量的编码(标签编码)
class CustomEncoder(TransformerMixin):
    def __init__(self, col, ordering=None):
        self.ordering = ordering
        self.col = col
        
    def transform(self, df):
        X = df.copy()
        X[self.col] = X[self.col].map(lambda x: self.ordering.index(x))
        return X
    
    def fit(self, *_):
        return self
    

# 调用自定义的填充器
ce = CustomEncoder(col='ordinal_column', ordering=['dislike','somewhat like','like'])
ce.fit_transform(X)

3)数值变量分箱操作

以上的内容是对类别变量的一些简单处理操作,也是比较常用的几种,接下来我们就对数值变量进行一些简单处理方法的讲解。

有的时候,虽然变量值是连续的,但是只有转换成类别才有解释的可能,比如年龄,我们需要分成年龄段,这里我们可以使用pandas的 cut函数来实现。

代码语言:javascript
复制
# 数值变量处理——cut函数
class CustomCutter(TransformerMixin):
    def __init__(self, col, bins, labels=False):
        self.labels = labels
        self.bins = bins
        self.col = col
        
    def transform(self, df):
        X = df.copy()
        X[self.col] = pd.cut(X[self.col], bins=self.bins, labels=self.labels)
        return X
    
    def fit(self, *_):
        return self
    

# 调用自定义的填充器
cc = CustomCutter(col='quantitative_column', bins=3)
cc.fit_transform(X)

综上,我们可以对上面自定义的方法一并在Pipeline中进行调用,Pipeline的顺序为:

1)用imputer填充缺失值

2)独热编码city和boolean

3)标签编码ordinal_column

4)分箱处理quantitative_column

代码为:

代码语言:javascript
复制
from sklearn.pipeline import Pipeline

# 流水线封装
pipe = Pipeline([('imputer',imputer),
                 ('dummify',cd),
                 ('encode',ce),
                 ('cut',cc)
])

# 训练流水线
pipe.fit(X)

# 转换流水线
pipe.transform(X)
? 数值变量扩展

这一小节我们使用一个新的数据集(人体胸部加速度数据集),我们先导入数据:

代码语言:javascript
复制
# 人体胸部加速度数据集,标签activity的数值为1-7
'''
1-在电脑前工作
2-站立、走路和上下楼梯
3-站立
4-走路
5-上下楼梯
6-与人边走边聊
7-站立着说话

'''
df = pd.read_csv('./data/activity_recognizer/1.csv', header=None)
df.columns = ['index','x','y','z','activity']
df.head()

这边只介绍一种多项式生成新特征的办法,调用PolynomialFeatures来实现。

代码语言:javascript
复制
# 扩展数值特征
from sklearn.preprocessing import PolynomialFeatures

x = df[['x','y','z']]
y = df['activity']

poly = PolynomialFeatures(degree=2, include_bias=False, interaction_only=False)

x_poly = poly.fit_transform(x)
pd.DataFrame(x_poly, columns=poly.get_feature_names()).head()

还可以查看下衍生新变量后的相关性情况,颜色越深相关性越大:

代码语言:javascript
复制
# 查看热力图(颜色越深代表相关性越强)
%matplotlib inline
import seaborn as sns

sns.heatmap(pd.DataFrame(x_poly, columns=poly.get_feature_names()).corr())

在流水线中的实现代码:

代码语言:javascript
复制
# 导入相关库
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline

knn = KNeighborsClassifier()

# 在流水线中使用
pipe_params = {'poly_features__degree':[1,2,3],
               'poly_features__interaction_only':[True,False],
               'classify__n_neighbors':[3,4,5,6]}

# 实例化流水线
pipe = Pipeline([('poly_features',poly),
                 ('classify',knn)])

# 网格搜索
grid = GridSearchCV(pipe, pipe_params)
grid.fit(x,y)

print(grid.best_score_, grid.best_params_)
代码语言:javascript
复制
0.721189408065 {'classify__n_neighbors': 5, 'poly_features__degree': 2, 'poly_features__interaction_only': True}
? 文本变量处理

文本处理一般在NLP(自然语言处理)领域应用最为广泛,一般都是需要把文本进行向量化,最为常见的方法有 词袋(bag of words)、CountVectorizer、TF-IDF。

1)bag of words

词袋法分成3个步骤,分别是分词(tokenizing)、计数(counting)、归一化(normalizing)。

2)CountVectorizer

将文本转换为矩阵,每列代表一个词语,每行代表一个文档,所以一般出来的矩阵会是非常稀疏的,在sklearn.feature_extraction.text 中调用 CountVectorizer 即可使用。

3)TF-IDF

TF-IDF向量化器由两个部分组成,分别为代表词频的TF部分,以及代表逆文档频率的IDF,这个TF-IDF是一个用于信息检索和聚类的词加权方法,在 sklearn.feature_extraction.text 中调用 TfidfVectorizer 即可。

TF:即Term Frequency,词频,也就是单词在文档中出现的频率。 IDF:即Inverse Document Frequency,逆文档频率,用于衡量单词的重要度,如果单词在多份文档中出现,就会被降低权重。

✅ 04 特征选择

好了,经过了上面的特征衍生操作,我们现在拥有了好多好多的特征(变量)了,全部丢进去模型训练好不好?当然是不行了?,这样子既浪费资源又效果不佳,因此我们需要做一下 特征筛选 ,而特征筛选的方法大致可以分为两大类:基于统计的特征筛选 和 基于模型的特征筛选。

在进行特征选择之前,我们需要搞清楚一个概念:到底什么是更好的?有什么指标可以用来量化呢?

这大致也可以分为两大类:一类是模型指标,比如accuracy、F1-score、R^2等等,还有一类是元指标,也就是指不直接与模型预测性能相关的指标,如:模型拟合/训练所需的时间、拟合后的模型预测新实例所需要的时间、需要持久化(永久保存)的数据大小。

我们可以通过封装一个方法,把上面提及到的指标封装起来,方便后续的调用,代码如下:

代码语言:javascript
复制
from sklearn.model_selection import GridSearchCV

def get_best_model_and_accuracy(model, params, x, y):
    grid = GridSearchCV(model,
                        params,
                        error_score=0.)
    grid.fit(x,y)
    
    # 经典的性能指标
    print("Best Accuracy:{}".format(grid.best_score_))
    # 得到最佳准确率的最佳参数
    print("Best Parameters:{}".format(grid.best_params_))
    # 拟合的平均时间
    print("Average Time to Fit (s):{}".format(round(grid.cv_results_['mean_fit_time'].mean(), 3)))
    
    # 预测的平均时间
    print("Average Time to Score (s):{}".format(round(grid.cv_results_['mean_score_time'].mean(), 3)))
    
    
###############  使用示例  ###############
# 导入相关库
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline

knn = KNeighborsClassifier()

# 在流水线中使用
pipe_params = {'poly_features__degree':[1,2,3],
               'poly_features__interaction_only':[True,False],
               'classify__n_neighbors':[3,4,5,6]}

# 实例化流水线
pipe = Pipeline([('poly_features',poly),
                 ('classify',knn)])

# 网格搜索
get_best_model_and_accuracy(pipe, pipe_params, x, y)

通过上面的操作,我们可以创建一个模型性能基准线,用于对比后续优化的效果。接下来介绍一些常用的特征选择方法。

1)基于统计的特征选择

针对于单变量,我们可以采用 皮尔逊相关系数以及假设检验 来选择特征。

(1)皮尔逊相关系数可以通过 corr() 来实现,返回的值在-1到1之间,绝对值越大代表相关性越强;

(2)假设检验也就是p值,作为一种统计检验,在特征选择中,假设测试得原则是:” 特征与响应变量没有关系“(零假设)为真还是假。我们需要对每个变量进行检测,检测其与target有没有显著关系。可以使用 SelectKBestf_classif 来实现。一般P值是介于0-1之间,简而言之,p值越小,拒绝零假设的概率就越大,也就是这个特征与target关系更大。

2)基于模型的特征选择

(1)对于文本特征,sklearn.feature_extraction.text里的 CountVectorizer有自带的特征筛选的参数,分别是 max_features、min_df、max_df、stop_words,可以通过搜索这些参数来进行特征选择,可以结合 SelectKBest 来实现流水线。

(2)针对?树模型,我们可以直接调用不同树模型算法里的 特征重要度 来返回特征重要度,比如 DecisionTreeClassifier里的feature_importances_,(除此之外还有RandomForest、GBDT、XGBoost、ExtraTreesClassifier等等)都可以直接返回每个特征对于本次拟合的重要度,从而我们可以剔除重要度偏低的特征,可以结合 SelectFromModel来实现流水线。

(3)使用正则化来筛选变量(针对线性模型)。有两种常用的正则化方法:L1正则化(Lasso)和L2正则化(岭)。

总结一下,有几点做特征选择的方法经验:

(1)如果特征是分类变量,那么可以从SelectKBest开始,用卡方或者基于树的选择器来选择变量;

(2)如果特征是定量变量,可以直接用线性模型和基于相关性的选择器来选择变量;

(3)如果是二分类问题,可以考虑使用 SelectFromModel和SVC;

(4)在进行特征选择前,还是需要做一下EDA。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-09-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SAMshare 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ? 目录
  • ? 03 特征构建
    • ? 基础操作
      • ? 数值变量扩展
        • ? 文本变量处理
        • ✅ 04 特征选择
          • 1)基于统计的特征选择
            • 2)基于模型的特征选择
              • 总结一下,有几点做特征选择的方法经验:
              相关产品与服务
              NLP 服务
              NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档